Skip to main content

Section 11.5 Hypothesis Test for one variance

Proceeding in a similar manner, we can also perform hypothesis testing on variances using the ฯ‡2-distribution to determine probabilities.
H0:ฯƒ2=ฯƒ02Ha:ฯƒ2โ‰ ฯƒ02
H0:ฯƒ2โ‰ฅฯƒ02Ha:ฯƒ2<ฯƒ02
H0:ฯƒ2โ‰คฯƒ02Ha:ฯƒ2>ฯƒ02
test statistic=T=(nโˆ’1)s2ฯƒ02
For two-tailed, reject if
T>ฯ‡1โˆ’ฮฑ/2,nโˆ’12 or T<ฯ‡ฮฑ/2,nโˆ’12
and for one-tailed to the right if
T>ฯ‡1โˆ’ฮฑ,nโˆ’12
and for one-tailed to the left if
T<ฯ‡ฮฑ,nโˆ’12.
Technically, for the two-tailed test you could pick T-values so that the total probability sums to ฮฑ in any fashion but generally this probability is split evenly between the two tails as noted above.
Use a ฮฑ=0.01 significance level to test the claim that ฯƒ=17 if the sample statistics include n=11, xโ€•=106, and s=23.
The test statistic is
The smaller critical number is
The bigger critical number is
What is your conclusion?
  • There is not sufficient evidence to warrant the rejection of the claim that the population standard deviation is equal to 17
  • There is sufficient evidence to warrant the rejection of the claim that the population standard deviation is equal to 17
Answer 1.
18.3044982698962
Answer 2.
2.15586
Answer 3.
25.1882