Skip to main content

Section 11.5 Hypothesis Test for one variance

Proceeding in a similar manner, we can also perform hypothesis testing on variances using the \(\chi^2\)-distribution to determine probabilities.

\begin{equation*} H_0 : \sigma^2 = \sigma_0^2 \\ H_a: \sigma^2 \neq \sigma_0^2 \end{equation*}

or

\begin{equation*} H_0 : \sigma^2 \ge \sigma_0^2 \\ H_a: \sigma^2 \lt \sigma_0^2 \end{equation*}

or

\begin{equation*} H_0 : \sigma^2 \le \sigma_0^2 \\ H_a: \sigma^2 \gt \sigma_0^2 \end{equation*}
\begin{equation*} \text{test statistic} = T = (n-1) \frac{s^2}{\sigma_0^2} \end{equation*}

For two-tailed, reject if

\begin{equation*} T \gt \chi_{1-\alpha/2,n-1}^2 \text{ or } T \lt \chi_{\alpha/2,n-1}^2 \end{equation*}

and for one-tailed to the right if

\begin{equation*} T \gt \chi_{1-\alpha,n-1}^2 \end{equation*}

and for one-tailed to the left if

\begin{equation*} T \lt \chi_{\alpha,n-1}^2. \end{equation*}

Technically, for the two-tailed test you could pick T-values so that the total probability sums to \(\alpha\) in any fashion but generally this probability is split evenly between the two tails as noted above.

Checkpoint 11.5.1. WebWorK - Confidence Interval for \(\sigma\).