Skip to main content

Section 6.5 Generating Functions for Uniform-based Distributions

Moment Generating Functions 5.5.1 can be derived for each of the distributions in this chapter.

Presuming \(R\) = {1, 2, ..., n},

\begin{equation*} M(t) = \sum_{x=1}^n e^{tx}/n = \frac{1}{n} \cdot \left [ e^t + e^{2t} + ... e^{nt} \right ] \end{equation*}

Presuming \(R\) = [a,b],

\begin{equation*} M(t) = \int_a^b e^{tx} \frac{1}{b-a} dx = \frac{1}{b-a} \frac{1}{t} e^{tx} \big |_a^b = \frac{e^{bx} - e^{ax}}{b-a} \end{equation*}
\begin{align*} M(t) & = \sum_{x=0}^{n_1} e^{tx} \frac{\binom{n_1}{x} \binom{n-n_1}{r-x}}{\binom{n}{r}}\\ & = \text{a mess...} \end{align*}