Skip to main content

Section 9.2 The Normal Distribution

Definition 9.2.1 The Normal Distribution
Given two parameters \(\mu\) and \(\sigma\text{,}\) a random variable X over \(R = (-\infty,\infty)\) has a normal distribution provided it has a probability function given by
\begin{equation*} f(x) = \frac{1}{\sigma \sqrt{2 \pi}} e^{ -\left ( \frac{x-\mu}{\sigma} \right ) ^2 / 2} \end{equation*}

The normal distribution is also sometimes referred to as the Gaussian Distribution (often by Physicists) or the Bell Curve (often by social scientists).

Convert to "standard units" using the conversion

\begin{equation*} z = \frac{x-\mu}{\sigma} = \frac{x-0}{1} = x. \end{equation*}

Note that you can convert the integral above to standard units so that it is sufficient to show

\begin{equation*} I = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{ -\frac{z^2}{2} } dz = 1 \end{equation*}

Toward this end, consider \(I^2\) and change the variables to get

\begin{align*} I^2 & = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{ -\frac{u^2}{2} } du \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{ -\frac{v^2}{2} } dv\\ & = \frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{ -\frac{u^2+v^2}{2} } du dv \end{align*}

Converting to polar coordinates using

\begin{equation*} du dv = r dr d\theta \end{equation*}

and

\begin{equation*} u^2 + v^2 = r^2 \end{equation*}

gives

\begin{align*} I^2 & = \frac{1}{2 \pi} \int_0^{2 \pi} \int_0^{\infty} e^{ -\frac{r^2}{2} } r dr d\theta\\ & = \frac{1}{2 \pi} \int_0^{2 \pi} -e^{ -\frac{r^2}{2} } \big |_0^{\infty} d\theta\\ & = \frac{1}{2 \pi} \int_0^{2 \pi} 1 \cdot d\theta\\ & = \frac{1}{2 \pi} \theta \big |_0^{2 \pi} = 1 \end{align*}

as desired.

\begin{equation*} z = \frac{x-\mu}{\sigma} \end{equation*}

implies by solving that

\begin{equation*} x = \mu + z \sigma \end{equation*}

and therefore

\begin{align*} E[X] &= \int_{-\infty}^{\infty} x \cdot \frac{1}{\sigma \sqrt{2 \pi}} e^{ - \left ( \frac{x-\mu}{\sigma} \right ) ^2 / 2} dx \\ &= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} (\mu + z\sigma) \cdot e^{ -z^2 / 2} dz\\ &= \mu \cdot \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{ -z^2 / 2} dz + \sigma \cdot \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} z \cdot e^{ -z^2 / 2} dz\\ &= \mu \cdot 1 + \sigma \cdot 0\\ & = \mu \end{align*}

and therefore the use of \(\mu\) is warranted.

Take the derivative of the probability function to get

\begin{equation*} \frac{\sqrt{2} {\left(\mu - x\right)} e^{\left(-\frac{{\left(\mu - x\right)}^{2}}{2 \, \sigma^{2}}\right)}}{2 \, \sqrt{\pi} \sigma^{3}} \end{equation*}

which is zero only when \(x = \mu\text{.}\) Easily by evaluating to the left and right of this value shows that this critical value yields a maximum.

Take the second derivative of the probability function to get

\begin{equation*} \frac{\sqrt{2} {\left(\mu + \sigma - x\right)} {\left(\mu - \sigma - x\right)} e^{\left(-\frac{\mu^{2}}{2 \, \sigma^{2}} + \frac{\mu x}{\sigma^{2}} - \frac{x^{2}}{2 \, \sigma^{2}}\right)}}{2 \, \sqrt{\pi} \sigma^{5}} \end{equation*}

which is zero only when \(x = \mu \pm \sigma\text{.}\) Easily by evaluating to the left and right of this value shows that these critical values yield points of inflection.

Notice that the work needed to complete the integrals over the entire domain above was pretty serious. To determine probabilities for a given interval is however not possible in general and therefore approximations are needed. When using TI graphing calculators, you can use

\begin{equation*} P( a \lt x \lt b ) = \text{normalcdf}(a,b,\mu, \sigma). \end{equation*}

Or you can use the calculator below.