Skip to main content

Section 8.2 Poisson Distribution

Consider a Poisson Process where you start with an interval of fixed length T and where X measures the variable number of successes, or changes, within a that interval. The resulting distribution of X will be called a Poisson distribution.

For a sufficiently large natural number n, break up the given interval [0,T] into n uniform parts each of width h = T/n. Using the properties of Poisson processes, n very large implies h will be very small and eventually small enough so that

\begin{equation*} P(\text{exactly one success on a given interval}) = p = \lambda \frac{T}{n}. \end{equation*}

However, since there are a finite number of independent intervals each with probability p of containing a success then you can use a Binomial distribution to evaluate the corresponding probabilities so long as n is finite. Doing so yields and taking the limit as n approaches infinity gives:

\begin{align*} f(x) & = P(\text{X changes in [0,T]}) \\ & = \lim_{n \rightarrow \infty} \binom{n}{x} p^x (1-p)^{n-x}\\ & = \lim_{n \rightarrow \infty} \binom{n}{x} (\frac{\lambda T}{n})^x (1-\lambda \frac{T}{n})^{n-x}\\ & = \lim_{n \rightarrow \infty} \frac{n(n-1)...(n-x+1)}{x!} ( \frac{\lambda T}{n})^x (1- \frac{\lambda T}{n})^{n-x}\\ & = \frac{(\lambda T)^x}{x!} \lim_{n \rightarrow \infty} \frac{n(n-1)...(n-x+1)}{n \cdot n \cdot ... \cdot n} (1-\lambda \frac{T}{n})^{n}(1-\lambda \frac{T}{n})^{-x}\\ & = \frac{(\lambda T)^x}{x!} \lim_{n \rightarrow \infty} (1-\frac{1}{n})...(1-\frac{x-1}{n}) (1- \frac{\lambda T}{n})^{n}(1- \frac{\lambda T}{n})^{-x}\\ & = \frac{(\lambda T)^x}{x!} \lim_{n \rightarrow \infty} (1- \frac{\lambda T}{n})^{n} \lim_{n \rightarrow \infty} (1- \frac{\lambda T}{n})^{-x}\\ & = \frac{(\lambda T)^x}{x!} \lim_{n \rightarrow \infty} (1- \frac{\lambda T}{n})^{n} \cdot 1\\ & = \frac{(\lambda T)^x}{x!} e^{-\lambda T} \end{align*}

Using the Power Series expansion for the natural exponential,

\begin{align*} \sum_{x=0}^{\infty} f(x) & = \sum_{x=0}^{\infty} \frac{(\lambda T)^x}{x!} e^{-\lambda T} \\ & = e^{-\lambda T} \sum_{x=0}^{\infty} \frac{(\lambda T)^x}{x!} \\ & = e^{-\lambda T} e^{\lambda T} \\ & = 1 \end{align*}

Using the f(x) generated in the previous theorem

\begin{align*} \mu & = E[X] \\ & = \sum_{x=0}^{\infty} x \cdot \frac{(\lambda T)^x}{x!} e^{-\lambda T}\\ & = \lambda T e^{-\lambda T} \sum_{x=1}^{\infty} \frac{(\lambda T)^{x-1}}{(x-1)!} \\ & = \lambda T e^{-\lambda T} \sum_{k=0}^{\infty} \frac{(\lambda T)^k}{k!} \\ & = \lambda T e^{-\lambda T} e^{\lambda T} \\ & = \lambda T \end{align*}

which confirms the use of \(\mu\) in the original probability formula.

Continuing with \(\mu = \lambda T\text{,}\) the variance is given by

\begin{align*} \sigma^2 & = E[X(X-1)] + \mu - \mu^2 \\ & = \sum_{x=0}^{\infty} x(x-1) \cdot \frac{\mu^x}{x!} e^{-\mu} + \mu - \mu^2\\ & = e^{-\mu} \mu^2 \sum_{x=2}^{\infty} \frac{\mu^{x-2}}{(x-2)!} + \mu - \mu^2\\ & = e^{-\mu} \mu^2 \sum_{k=0}^{\infty} \frac{\mu^k}{k!} + \mu - \mu^2\\ & = \mu^2 + \mu - \mu^2 \\ & = \mu \end{align*}

To derive the skewness and kurtosis, you can depend upon Sage...see the live cell below.

Approximation by binomial means you can also use Poisson to approximate Binomial for n sufficiently large.