Section 5.3 Time-weighted annual rate of return
Suppose now that we make investments into a fund over time and know the outstanding balance befoer each deposit or withdrawl occurs. Notationally, let \(B_0\) be the initial balance in the fund and \(B_k\) the balance in the fund immediately before time \(t_k\) with \(W_k\) the amount of each deposit (if negative, then withdrawal). On a time line:
\begin{equation*}
\begin{matrix}
\text{Time} & 0 & t_1 & t_2 & \ldots & t_{n-1} & t_n \\
\hline \\
\text{Balance Before} & 0 & B_1 & B_2 & ... & B_{n-1} & B_n \\
\hline \\
\text{Deposit/Withdrawal} & 0 & W_1 & W_2 & ... & W_{n-1} & W_n \\
\hline \\
\text{Balance After} & B_0 & B_1 + W_1 & B_2 + W_2 & ... & B_{n-1} + W_{n-1} & B_n + W_n \\
\end{matrix}
\end{equation*}
Theorem 5.3.1. Time Weighted Annual Rate of Return Formula.
The "time-weighted annual rate of return" r is the solution of
\begin{equation*}
(1+r)^{t_n} = \frac{B_1}{B_0} \cdot \frac{B_2}{B_1+W_1} \cdot \ldots \cdot \frac{B_n}{B_{n-1}+W_{n-1}}
\end{equation*}
Proof.
From the beginning of time, the growth over the first time period is given by \(B_1 = B_0(1+r_1)^{t_1}\) or
\begin{equation*}
\frac{B_1}{B_0} = (1+r_1)^{t_1}\text{.}
\end{equation*}
For subsequent time periods, the growth is given by \(B_{k+1} = B_k(1+r_2)^{t_{k+1}-t_k}\) or
\begin{equation*}
\frac{B_{k+1}}{B_k} = (1+r_2)^{t_{k+1}-t_k}\text{.}
\end{equation*}
Multiplying these together yields
\begin{align*}
\frac{B_1}{B_0} \cdot \frac{B_2}{B_1} ... \cdot \frac{B_n}{B_{n-1}}\\
& = (1+r_1)^{t_1} \cdot (1+r_2)^{t_2-t_1} ... \cdot (1+r_n)^{t_n-t_{n-1}} \\
& = (1+r)^{t_n}
\end{align*}
noting that \(r_k = r\) for all k would allow all of the powers to cancel except for the last. Define the time-weighted annual rate of return to be the value of r that makes this happen.
Example 5.3.2.
Consider the sequence of investments described in the table below:
\begin{equation*}
\begin{matrix}
\text{Time} & \text{11/1/16} & \text{3/1/17} & \text{8/1/17} & \text{2/1/18} & \text{4/1/18} \\
\hline \\
\text{Balance Before} & \$ 14516 & \$ 14547 & \$ 18351 & \$ 16969 & \$ 18542 \\
\hline \\
\text{Deposit/Withdrawal} & 0 & \$ 3000 & -\$ 2000 & \$ 2500 & 0 \\
\end{matrix}
\end{equation*}
Then the time-weighted annual effective yield rate is given by
\begin{equation*}
(1+r)^{17/12} = \frac{14547}{14516} \cdot \frac{18351}{14547+3000} \cdot \frac{16969}{18351-2000} \cdot \frac{18524}{16969+2500} \approx 1.035877
\end{equation*}
and by solving yields \(r \approx 0.025193371\)