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MEASURES 

 
Notation: If E is any set, then the characteristic function of E is given by 
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Step Functions:  S(x) is a step function if S(x) is piecewise constant on intervals.  If one partitions an 
interval [a,b] into sub-intervals, a step function can be written of the form  

s(x) = ∑
k

(x)s kkχ , 

where sk is a value of the function on interval k.   
 
Further, the integral of this step function is given by ∑ Δ

k
kk xs , where Δxk = length of interval k. 

Result:  To determine the Riemann integral for a general function, partition the interval [a,b].  To 
obtain an upper sum create the step function Su(x) such that on each subinterval Su(x) = max f(x), for 
all x's in the subinterval.  Similarly, one can create lower sums. 
 
Riemann Integral: A general function f:[a,b]→R is Riemann integrable if the infinum of all upper 
sums equals the supremum of all lower sums.  
 
To integrate a general function f(x), take a sequence of step functions on a finer and finer partition of 
[a,b] and define the Riemann integral of f(x) to be the limit of the integrals of the step functions. 
 
Questions: Is the function f integrable over [0,1] when f is given by: 

• f(x) = x; YES (Easy function using FTOC) 
 
• f(x) = sin(x); YES (Transcendental using FTOC) 
 
• f(x) = (x - 0.5) / |x - 0.5|; YES (Note, this is discontinuous.) 
 
• f(x) = χ{1/n | n=1,2,3,...}(x); YES 
 
• f(x) = χQ(x), where Q=rationals; NO (There are functions which are not Riemann integrable.) 

 
 
Problem: There exist Riemann integrable functions fn(x) such that fn→χQ. Indeed, take the set  

 
En = {p/q | the fraction is reduced and q < n, 0 < p < q }.  

 
Note, as n gets larger, En gets closer to the set of rationals Q. Also, notice the sequence of functions 

 
f1 = χ{0,1}(x),    f2 = χ{0,1/2,1}(x),    f3 = χ{0,1/3,1/2,2/3,1}(x), ...  
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are all Riemann integrable on the interval [0,1] but they approach χQ(x) which isn't Riemann 
integrable on the interval [0,1]. This problem arises because the Riemann integral is not "complete". 
Thus, the need for the a new way of determining whether something is integrable…enter the 
Lebesgue integral. 
 
Generalization: Instead of using interval partitions of [a,b] and the resulting step functions to define 
the integral (like Riemann), use a collection of disjoint sets Ek (not necessarily intervals) such that the 
union of the Ek = [a,b] and create a simple function 

s(x) = ∑
k

(x)s
kEkχ . 

 
Then, the integral of this simple function is given by  

∑
k

m )E(s kk  

where the measure of the set Ek = m(Ek), generalizes length. 
 
Defn: For given sets E and F:  

• The complement of E is the set Ec = {x | x ∉  E } 
• The set difference E - F = { x | x ∈ E and x ∉  F } 
• Two sets are disjoint if their intersection is the empty set.  
• The superior limit of {En}, denoted lim sup En, is the set consisting of those points which belong 

to infinitely many of the En.  
• The inferior limit of {En}, denoted lim inf En, is the set consisting of those points which belong to 

all but a finite number of the En.  
• If E* = lim sup En = lim inf En, then we say the sequence {En} has a limit E*. 

 
Defn: (Friedman) Ring, algebra, σ-ring and σ-algebra ... see defns 1.1.1 and 1.1.2. 
 
Note: The definitions above require closure with respect to set union and set difference. It is easy to 
show that in a ring and σ-ring, we also get closure with respect to set intersection by considering E∩F 
= E - (E-F). Also, in an algebra and σ-algebra, we get closure with respect to complements by 
considering X-E. 
 
HOMEWORK: (Friedman)  page 3, #3 (assuming σ-algebra), 4 
 
Borel's Conditions: Properties that a good measure should have. 

• B0: m([a,b]) = length([a,b]) = b-a. 
• B1: m(E) > 0, for any set E 
• B2: m( U Ek) = Σ m(Ek), for mutually disjoint sets Ek. 
• B3: m(F - E) = m(F) - m(E), where E is contained in F 
• B4: m(E) > 0 implies E is uncountable 

 
Defn:  A given set function m with domain a ring R is said to be: 

• additive provided  m(E U F) = m(E) + m(F), where E∈R, F∈R and E∩F =φ . 

• finitely additive if m(U ) = , where all of the sets are mutually disjoint 
n

k
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• completely additive if m( ) = , where all of the sets are mutually disjoint U
∞

=1k
kE ∑

∞

=1
)(

k
kEm

 

 2



Defn 1.2.1: A measure is an extended real-valued set function m having the following properties: 
• The domain A of m is a σ-algebra. 
• m is nonnegative on A 
• m is completely additive on A (see fomula 1.2.1, page 4) 
• m(φ ) = 0 

 
Result: A measure is finitely additive. 

Pf: Since a measure is completely additive, it must be finitely additive by taking all the sets Em 
to be empty, m > n. 

 
Defn: If X is the entire space under consideration and m(X) < ∞, then we say the set function m is a 
finite measure. If X can be written as the infinite union of sets En such that for all n, m(En) < ∞, then 
the measure is a σ-finite measure. 
 
Theorem 1.2.1. Let m be a measure with domain A. Then: 

(Monotonicity – HW #1, pg 55 )  If E∈A and F∈A with E F, then m(E) ⊆ < m(F). 
Pf: Write F = E U (F-E), which is a disjoint union.  
Since a measure is additive, then m(F) = m(E) + m(F-E).  
But a measure is also nonnegative and so m(F-E) > 0. Hence, the result follows. 
 

(Differences)  If E∈A and F∈A with E F and m(F)< ∞ , then m(F-E) = m(F) - m(E). ⊆
Pf: Use formula above. 
 

(Continuity)  If {En} is a monotone-increasing sequence in A, then lim m(En) = m( lim En). 
Pf: Problem 1.1.3 (Friedman) implies that lim En is in the domain A. 
If E0 =φ , notice En = (En - En-1) U (En-1 - En-2) U ... U (E2 - E1) U (E1 - E0) = U (Ek - Ek-1). 
As n→∞, this becomes an infinite union of mutually disjoint sets.  

Thus, m(lim En) = m( U (Ek - Ek-1) ) =  , by completely additivity ∑
∞

=
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= , going to the definition of an infinite summation ∑
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= lim m( En ), noting the union collapses. 
 

(Continuity Revisited)  The limits can be interchanged also provided the sequence is 
monotone-decreasing and the measure of one of the sets EM is finite. 

Pf: Notice that the sequence EM - Ek is now monotone-increasing. Apply (iii) and (ii). 
 
Theorem 1.2.2: (HW #2, pg 55 )   
Let m be a measure with domain A. Then, for the infinite collection {En}, n=1..., of sets of A, 

m( U En) < Σ m(En) 
 
Pf: Create the mutually disjoint, monotone sequence of sets Fn using  

 
F1 = E1 and Fn = En - [E1 U E2 U ... U En-1 ], 

 
a mutually disjoint collection of sets.  Hence, 
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m( U En) = m( U Fn) = Σ m(Fn) < Σ m(En). 

 
HOMEWORK: (Friedman) page 7, #1, 3; (Royden) page 54, #3, 4 
 
Defn:  Given a set A and an interval measure λ defined on open intervals, the outer measure is ℜ⊆

m*(A) = ∑⊂
)(inf nIA

I
n

λ
U

. 

 
Results:  Given any outer measure m*: 

• m*(φ ) = 0 
• A⊆B implies m*(A) < m*(B) 
• m*( {x} ) = 0 

 
Proposition 1:  The outer measure of an interval is its length. 
Pf:   
Case 1:  A=[a,b].   
Easily, for ε>0, [a,b]  (a – ε, b + ε ).  Therefore, m*([a,b]) < b – a + 2ε. ⊆
Since this is true for any such ε, then  

 
b – a = inf λ(a – ε, b + ε). 

 
Thus m*([a,b]) < b - a.   
If {Ek} is another countable collection of open intervals covering [a,b], then easily b – a < Σ λ(Ek). 
By the Heine-Borel theorem, this countable cover must contain a finite subcover of [a,b]. 
WOLOG, consider the subinterval which contains a and denote it E1 so that 
 
 a∈E1 = (a1,b1)  
 
If b1 < b, continue enumerating from this finite subset of intervals E2, E3, … 

 
b1∈E2= (a2,b2), 
b2∈E3= (a3,b3), etc. 

 
Since the finite subcover must eventually cover b, this process will end with 
 
 b ∈  En= (an,bn). 
 
Therefore,  
 

Σ λ(En) > Σ λ((ak,bk)) = Σ (bk - ak) > bn – a1 > b – a 
 

and so b – a < Σ λ(En).  Hence, the infinum can be no smaller than b-a. 
 
Case 2:  A = a finite collection of disjoint intervals (including open or closed pieces) 
For each interval E in A , there is a closed interval F E such that λ(E) < λ(F) + ε. ⊂
Hence,  

λ(E) – ε < λ(F) = m*(F) < m*(E) < m*( E ) = λ( E ) = λ(E). 
 
Since ε was arbitrary, these inequalities must all be equalities and therefore m*(E) = λ(E) 
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By the finite additivity of m*, the result follows. 
 
Case 3:  A = an infinite interval.   
Then, for any real number ε, there exists a closed interval F E such that λ(F) = ε. ⊂
So,  
 

m*(E) > m*(F) = ε. 
 
This time, let ε become arbitrarily large to yield m*(E) = ∞ = λ(E). 
 
 
Proposition 2: m*( U En) < Σ m*(En) 
Pf:  If for one of the sets m*(En) = ∞, then the inequality holds trivially. 
Therefore, assume the outer measure for each of the sets is finite.  By the definition of outer 
measure, for any ε>0 and for each En there is a collection of open intervals {In,k} such that  

 
m*(En) + 2-n ε  >∑ )( nIλ  

 with En . Therefore,  knI ,U⊂
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Let ε→0 to get the result. 
 
Corollary 3:  If A is countable then m*(A) = 0. 
Pf:  By the result before Proposition 1, the measure of a single point is zero.  Since A is countable, 
then A can be written as a collection of single point sets En.  By Proposition 2, m(A) < Σ m*(En) = 0, 
 
Corollary 4:  The set [0,1] is uncountable. 
Pf:  Using the contrapositive of Corollary 3, m*([0,1]) = 1 > 0 implies A is uncountable. 
 
 
Defn: Denote by B the σ-algebra generated by the class of all open sets of X. The sets of B are 
called Borel Sets.  B is the smallest σ-algebra which contains all the open sets, the smallest σ-
algebra which contains all the closed sets and the smallest σ-algebra which contains all the open 
intervals.  (See page 53 – Royden.) 
 
Corollary 5:  Given any set A and any ε>0, there is an open set H such that A⊂H and  

m*(H) < m*(A) + ε 
 

Further, there is a Borel set G such that A G and m*(A) = m*(G). ⊂
 
 
HOMEWORK:  page 58 #5, 7, 8 
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Defn: Given an outer measure m*, then the set E is m* measurable if  
 

m*(A) = m*(A ∩ E) + m*(A-E).  
 
Note that m* is subadditive being an outer measure. Hence it is always true that  
 

m*(A) < m*(A ∩ E) + m*(A-E). 
 
To show equality, it suffices to verify m*(A) > m*(A ∩ E) + m*(A-E)). 
 
 
Theorem 1.3.1 (Friedman): Let m* be an outer measure and denote by A the class of all m*-
measurable sets. Then, A is a σ-algebra and the restriction m of m* to A is a measure. 
Pf:  
We will show the following: 

• Firstly that A is an algebra 
• Secondly that m satisfies the measure properties on A 
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• Lastly that A is a σ-algebra. 
(i) Lemma 6: (This will also be used later when discussing completeness) 

If m*(E) = 0, then E is measurable. 
Pf:  For any set A,  
 

m*(A ∩ E) + m*(A - E) < m*(E) + m*(A) = m*(A), 
 
since m* is monotone and (A ∩ E) C E and A - E  A ⊂
 
Hence, defn is satisfied and so, E is measurable. 
 

(ii) The empty set is measurable.  (Show empty set is in A.) 
Since m*(empty set)=0 by definition, then (i) implies that empty set∈A. 
 

(iii) (Show complements are in A.) 
Suppose E∈A. Then, m*(A) = m*(A ∩ E) + m*(A-E), by definition 1.3.2. But A ∩ E = A - 
Ec and A-E = A ∩ Ec. Hence, Ec∈A. 
 

(iv) Lemma 7: (Show unions are in A.) 
Let E1∈A and E2∈A be measurable sets.  Show E1U E2 satisfies is measurable. 
From defn since E1 and E2 are measurable,  
 

m*(A) = m*(A ∩ E1) + m*(A - E1)  
m*(A-E1) = m*( (A-E1) ∩ E2 ) + m*( (A-E1) - E2 ). 

 
Note,  
 

(A-E1) - E2 = A - (E1 U E2). 
 
Also,  
 

[ (A-E1) ∩ E2 ] U [ A ∩ E1 ]  
= [(A-E1) U (A ∩ E1) ] ∩ [ E2 U (A ∩ E1) ] 
= A ∩ [ E2 U E1 ]. 



 
So,  

m*(A ∩ (E1 U E2)) + m*(A-(E1 U E2))  
= m*([ (A-E1) ∩ E2 ] U [ A ∩ E1 ]) + m*((A-E1) - E2), and by subadditivity, 
< m*([ (A-E1) ∩ E2 ] ) + m*( A ∩ E1 ) + m*( (A-E1) - E2 ) 
= m*([ (A-E1) ∩ E2 ] ) + m*((A-E1) - E2) + m*( A ∩ E1 ), and since E2∈A 
= m*(A-E1) + m*( A ∩ E1 ), and finally since E1∈A 
= m*(A) 

 
Hence, we have m*(A) > m*(A ∩ (E1 U E2)) + m*(A-(E1 U E2)), which is sufficient to 
show E1 U E2 is measurable. 
 

(v) (Show differences are in the algebra.) 
Let E1∈A and E2∈A be measurable.  Show E1 -E2 is measurable. 
Indeed, notice  
 

E1 -E2 = E1 ∩ E2
c = (E1

c U E2)c. 
 
However, complements and unions belong by using (iii) and (iv). 
 

(vi) Lemma 9 (Show m* is additive when applied to sets in A.) 
Let {Ek} be a sequence of mutually disjoint sets in A and denote the union by Sn. 

We must show that m*(A ∩ Sn) = m*(A ∩ E∑
=

m

k 1
k). Use induction: 

(Basic Step: n=1)  

Prove m*(A ∩ S1) = m*(A ∩ E∑
=

m

k 1
k) = m*(A ∩ E1), which is true since S1=E1. 

(Induction step)  

Assume m*(A ∩ Sm) = m*(A ∩ E∑
=

m

k 1
k) is true for some m>1. 

Then, show m*(A ∩ Sm+1) = ∑
+

=

1

1

m

k
 m*(A ∩ Ek). 

However, by defn,  
 
m*(A ∩ Sm+1) = m*((A ∩ Sm+1) ∩ Sm) + m*((A ∩ Sm+1) - Sm). 
 
…and since, Sm+1 ∩ Sm = Sm and (A ∩ Sm+1) - Sm = A ∩ Em+1… 

 
= m*(A ∩ Sm) + m*(A ∩ Em+1),  
 

and by using the induction hypothesis on the first term, 
 

= m*(A ∩ E∑
=

m

k 1
k) + m*(A ∩ Em+1) 

= m*(A ∩ E∑
+

=

1

1

m

k
k), as desired. 

 
(vii) (Show m* is completely additive when applied to sets in A.) 
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Let {En} be an infinite sequence of mutually disjoint sets in A and let the union of these 
be denoted by S. Since m* is monotone and using (vi) on the smaller set Sn⊆S, 

 

m*(A ∩ S) > m*(A ∩ Sn) = m*(A ∩ E∑
=

n

k 1
k) 

 
Letting n→∞ noting the left side is independent of n yields  

 

m*(A ∩ S) > m*(A ∩ E∑
∞

=1k
k). 

The countable subadditivity of m* gives the reverse inequality. So equality must hold. 
 

(viii) Theorem 10 (Show A is a σ-algebra) 
Since A - S ⊆  A - Sn, then m*(A ∩ S) < m*(A ∩ Sn). 
Hence,  
m*(A) = m*(A ∩ Sn) + m*(A - Sn)  

> m*(A ∩ Sn) + m*(A - S)  

= m*(A ∩ E∑
=

n

k 1
k) + m*(A - S). 

Letting n→∞ and using (vii) yields  

m*(A) > ∑ m*(A ∩ E
∞

=1k
k) + m*(A - S) = m*(A ∩ S) + m*(A - S), 

which suffices. 
 

(ix) (Show m is a measure) 
Easily, noting (viii) gives A is a σ-algebra, the restriction m of m* to A satisfies all 
measure properties but complete additivity. To show this, simply use (vii) above with 
A=S. 

 
Lemma 11:  The interval (a,∞) is measurable. 
Pf:  By the definition of measurable sets, we only need to show for any set A 

 
m*(A) > m*( A ∩ (a,∞) ) + m*( A - (a,∞) ). 

 
For notational purposes, set  

B = A ∩ (a,∞) and C = A - (a,∞). 
 
If m*(A) = ∞, then the result is trivially true. 
 
Therefore, assume m*(A) < ∞. 
Since A has finite measure, for any ε>0 there is a countable collection of open intervals {En} which 
cover A and for which  

∑
n

nE )(λ < m*(A) + ε. 

To get back to the original set we want to show measurable, set  
 

En,1 = En ∩ (a,∞) and  
En,2 = En ∩ (-∞,a]. 
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Each of these are intervals or empty, B and C . U 1,nE⊆ U 2,nE⊆
Therefore, 
 

m*(B) < m*( EU n,1) < Σ m*(En,1), and 
 

m*(C) < m*( EU n,2) < Σ m*(En,2). 
and so 

m*( A ∩ (a,∞) ) + m*( A - (a,∞) ) < Σ m*(En,1) + Σ m*(En,2) < ∑
n

nE )(λ < m*(A) + ε 

as desired. 
 
HOMEWORK: page 10, #1, 2, 3 (Friedman) and page 64, #10 (Royden) 
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MEASURABLE FUNCTIONS AND INTEGRATION 

 
Defn: A measure space will describe a set X, a σ-algebra of subsets A and a measure m, often 
denoted simply as (X,A,m). Notice, for Lebesgue measure, the space X=Rn.  
 
If m(X) < ∞, the space is said to be finite and σ-finite if m  is σ-finite. 
 
Note: We will often want to consider the space X=[-∞, ∞], called the extended reals. To do so, 
topologically we declaring the following sets to be open: (a,b), [-∞,a), (a, ∞] and any union of 
segments of this type. 
 
Defn: An extended real-valued function f is measurable if for any open set M in R,  

 
f -1(M) = {x | f(x) ∈M } 

 
is a measurable set…that is f is measurable provided the inverse image of any open set in the range 
is a measurable set in the domain X.  
 
Proposition 18 (Theorem 2.1.1 and HW 2.1.4 and 2.1.5): Suppose f is an extended real-valued 
function defined on a measure space X.  Then, the following are equivalent: 

1. f is measurable 
2. f -1{ [-∞,c) } is measurable for each real number c. 
3. f -1{ [-∞,c] } is measurable for each real number c. 
4. f -1{ (c, ∞] } is measurable for each real number c. 
5. f -1{ [c, ∞] } is measurable for each real number c. 

Further, if these hold, then f -1{ c } is measurable for each real number c. 
 

Pf:   
(1→2)  Assume f is measurable.  Notice [-∞,c) is open.  Therefore, result holds by definition. 
(2→5)  Assume f -1{ [-∞,c) } is measurable for each real number c.  Since complements of measurable 
sets are also measurable, then f -1{ [c, ∞] } = f -1{ [-∞,c) }c is measurable. 
(5→2)  Reverse the roles above to get f -1{ [-∞,c) } = f -1{ [c, ∞] }c is measurable. 
(3→4)  Again f -1{ (c, ∞] } = f -1{ [-∞,c] }c

(4→3)  Again f -1{ [-∞,c] } = f -1{ (c, ∞] }c

(2→3)  Notice f -1{ [-∞,c] } = ∩ f -1{ [-∞,c - 1/n) }, each of which is measurable. 
(3→2)  Notice f -1{ [-∞,c) } = U f -1{ [-∞,c + 1/n] }, each of which is measurable. 
(3,5→6)  f -1{ c } = f -1{ [-∞,c] }∩ f -1{ [c, ∞] }, each of which is measurable if c is finite 
f -1{ ∞ } = ∩ f -1{ [n, ∞] }, each of which is measurable 
f -1{ -∞ } = ∩ f -1{ [-∞, -n] }, each of which is measurable 
 
 
Defn: A real-valued function f defined on the metric space X is continuous if the inverse image of any 
open set in R is open in X. 
 
Theorem 2.1.2: If f is continuous, then f is measurable. (Notice, the σ-algebra on R is created using 
the open sets.)  
 
HOMEWORK: (Friedman) page 31 #6, 8, 9 (very important), 10 
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Lemma 2.2.1: If f and g are measurable functions, then the set E = {x | f(x) < g(x) } is a measurable 
set. 

Pf: The set of all rational numbers is a countable set. Hence, we can write the rationals as an 
ordered set {rn}. Set  
 

En = {x | f(x) < rn } ∩ {x | rn < g(x) } = f -1(-∞,rn) ∩ g -1(rn ,∞).  
 

By theorem 2.1.1, the first of these two sets is measurable and the complement of the second 
is by looking at homework problem 2.1.5.  
 
Hence, En is itself measurable for every n and so E = U En is measurable. 
 

Notation: By writing f(x) + g(x), f(x) g(x) or f(x)/g(x), we will assume no indeterminant forms arise. 
 
Proposition 19 (Theorem 2.2.2): Vertical shifts, sums, differences, multiples and products of 
measurable functions are measurable functions. 
Pf: Suppose f and g are measurable functions and K is any non-zero constant. 
 
Vertical Shifts:  f(x) + K 

{ x : f(x) + K < c } = { x : f(x) < c - K }, which is measurable by Proposition 18 (2) 
 
Scalar Multiples:  K f(x) 

{ x : K f(x) < c } = { x : f(x) < c/K }, which is measurable by Proposition 18 (2) 
 
Sums:  f(x) + g(x) 

{ x : f(x) + g(x) < c } = { x : f(x) < c – g(x)}, which is measurable using Lemma 2.2.1 applied to 
the measurable functions f(x) and c – g(x). 

 
Differences:  f(x) – g(x) 

g(x) measurable implies - g(x) is measurable using scalar multiples above 
Using sums above, then f(x) – g(x) = f(x) + (-g(x)) is measurable. 

 
Products:  f(x) g(x) 

Notice, from problem 2.1.9, | f - g |2 and | f + g |2 are measurable.  
But f(x) g(x) = { | f + g |2 - | f - g |2 }/4, which is measurable. 

 
 
General Result: If f and g are measurable and real-valued and H is real and continuous on R2, then 
h(x) = H(f(x),g(x)) is measurable. 

Pf: Let  
 

Ga = { (u,v) : H(u,v) < a }, 
 
an open subset of R2. We can write Ga as a union of  “open square” intervals En, where 
 

En = { (u,v) : an < u < bn, cn < v < dn }. 
 
Notice, since f and g are measurable, so are 
 

{ x : an < f(x) < bn } = { x : an < f(x) }∩ { x : f(x) < bn }, and 



 
{ x : cn < g(x) < dn } = { x : cn < g(x) }∩{ x : g(x) < dn } 

 
Hence, the composite mapping h(x) satisfies 
 

{ x : h(x) < a } = { x : (f(x),g(x)) ∈ Ga } = U { x : (f(x),g(x)) ∈ En }, 
 
which is measurable by above. 

 
Corollary to General Result: The following are measurable: 

• f(x) + g(x) 
• f(x) g(x) 
• f(x)/g(x), provided g(x) is nonzero. 

 
Theorem 2.2.3 (Theorem 20): If {fn} is a sequence of measurable functions, then  

• sup {f1, f2,… fn} 
• inf {f1, f2,… fn} 
• sup { fn(x) }, over the entire infinite sequence 
• inf { fn(x) }, over the entire infinite sequence 
• lim sup fn(x) 
• lim inf fn(x) 

are all measurable. 
Pf: Notice,  

{x | sup fn(x) < c } = ∩ {x | fn(x) < c } = ∩ fn-1(-∞,c], 
 

which is the intersection of measurable sets (whether a finite or infinite collections) and 
therefore measurable.  It follows that inf fn(x) is measurable. By combining sups and infs, we 
get the rest of the functions are measurable. 

 
Defn: A property P is said to be true almost everywhere (a.e.) if the set of points E for which P is not 
true has measure zero. 
 
Lemma:  Any subset of a Lebesgue measurable set of measure zero is Lebesgue measurable. 

Pf:  Suppose m(E) = 0 and B⊆E.  Then, using monotonicity, 
 

m(A∩B) + m(A - B) ≤ m(B) + m(A - B) ≤ m(E) + m(A - B) = m(A - B) ≤ m(A) 
 
and so B is measurable. 

 
Proposition 21:  If f is Lebesgue measurable and f = g a.e., then g is Lebesgue measurable. 

Pf:  Let E be the set where f ≠ g.  By hypothesis, m(E) = 0.  Set 
A = f -1( (c,∞) ), which is measurable since f is measurable 
B = [ E ∩ g-1( (c,∞) ) ], which is measurable since it is a subset of E 
C = E ∩ g-1( (-∞,c) ) , which is measurable since it is a subset of E 

So,  
 

g-1( (c,∞) ) = [ A U B ] - C 
 
is measurable being the combination of measurable sets.  Therefore, so is the function g. 
 

 12
 



Corollary 2.2.4: If the sequence {fn} of measurable functions converges to the function g, then g is 
measurable. 

Pf: Apply Proposition 20 noting if lim fn(x) exist, it is equal to lim sup fn(x). 
 
Theorem 2.2.5: Let f be a nonnegative measurable functions. Then, there exists a monotone-
increasing sequence { fn } of simple nonnegative functions such that lim fn(x) = f(x) a.e. 

Pf: For n=1,2,3,... divide the y-axis up into "didactic" intervals with endpoints , for k=0,1,...,n2n. 
For any given value of x, define: 
 

If f(x) > n, define fn(x) = n. 
If f(x) < n and (k-1)/2n < f(x) < k/2n, for some k, define 

fn(x) = (k-1)/2n = greatest lower bound endpoint below the actual value of f(x) 
 
Then, fn(x) is a simple function and fn+1(x) > fn(x).  
Case 1: If f(x) < ∞ for a given x, then 0 < f(x) - fn(x) < 2-n, which approaches zero as n→∞. 
Case 2: If f(x) = ∞ for a given x, then fn(x)=n.  
Hence, fn(x) approaches f(x) as n→∞. 

 
HOMEWORK: page 35 #3, 6, 7 
 

Defn: A given simple function f(x) =  is said to be integrable if m(E∑
=

n

k 1
Ek (x)s

k
χ k) < ∞, for all k such that 

ak is nonzero. The integral over X is given by  

∫ ∑
=

=
n

k
kk Emadms

1
)(  

where we use the convention that 0·∞ = 0. The integral is independent of the (several equivalent) 
representations of s(x). 
 
If A is any measurable set, then the Integral of s over A is given by  

∑∫∫
=

∩=⋅=
n

k
kkA

A

AEmadmsdms
1

)(χ . 

 
Theorem 2.5.1: Let f and g be integrable simple functions and a and b be real numbers. Then, 

1. ∫ {a f + b g} dm= a ∫ f dm + b ∫ g dm  
 
2. If f > 0 a.e., then ∫E f dm > 0. 
 
3. If f > g a.e., then ∫E f dm > ∫E g dm. 
 
4. | f | is integrable and | ∫ f dm| < ∫ | f | dm 
 
5. ∫ |f + g| dm< ∫ |f| dm + ∫ |g| dm 
 
6. α < f < β a.e. on a measurable set E with m(E) < ∞ yields α@m(E) <  ∫E f dm < β@m(E). 
 
7. If f > 0 a.e. and E and F are measurable sets such that E⊆F, then ∫E f dm < ∫F f dm . 
 
8. If E is a disjoint union of measurable sets Ek, then ∫E f dm = Σ ∫Ek f dm  
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Remark: The idea of a sequence of functions being "close" to another function can be defined in 
several ways. Usually, given an x-value, one thinks of close as the sequence of y-values fn(x) getting 
closer to its limit f(x). 
 
Defn: A measurable function f is said to be a.e. real-valued is the set {x | |f(x)| = 4 } has measure zero. 
 
Defn: A sequence {fn} is convergent in measure if there is a measurable function f such that for any 

>0,  ∈
lim m[ { x : |fn(x) -f(x)| > ∈ } ] = 0. 

 
Theorem: If {fn} converges in measure to both f and g, then f=g a.e. and both are real-valued a.e. 
 
Defn: A sequence of measurable functions fn is said to be a Cauchy sequence in the mean if  

∫ | fn - fm| dm→0 as n,m→4 . 
 
Lemma 2.5.2: If fn is a sequence of integrable simple functions that is Cauchy in the mean, then there 
is an a.e. real-valued, measurable function f such that fn converges in measure to f. 

Pf: Let ∈>0. Choose En,m= { x | |fn(x) - fm(x)| > ∈ |.  
Since fn(x) - fm(x) is integrable, En,m has finite measure. 
Theorem 2.5.1 implies ∫ | fn - fm| dm  > ∈ m(En,m) > 0 
Since the sequence is Cauchy, the integral approaches zero and hence  
m(En,m) →0 as n,m→4 . 
Hence fn is Cauchy in measure and so by Corollary 2.4.4, fn is convergent in measure. 

 
HOMEWORK: page 42, #1, 2, 3 
 
Consider the following conditions: 

• C1: {fn} is a Cauchy sequence in the mean 
• C2: lim fn = f, a.e. 
• C3: {fn} converges in measure to f 

 
Defn 2.6.1: f is said to be integrable if there exists a sequence {fn} of integrable simple functions such 
that C1 and C2 hold. 
 
(Royden’s definition)  A nonnegative measurable function f is said to be integrable over the 
measurable set E provided ∫E f dm < 4. A general measurable function f is said to be integrable 
provided f = f + – f - and  ∫E f + dm < 4 and  ∫E f - dm < 4 
 
Theorem 2.6.1: f is integrable if and only if C1 and C3 hold. 

Pf: Suppose C1 and C2 hold. Lemma 2.5.2 implies {fn} converges in measure to an a.e. real-
valued, measurable function g.  
Theorem 2.4.3 and 2.3.1 imply that there is a subsequence {fn,k} of {fn} that converges a.e. to g. 
C2 implies g=f, a.e. Hence, {fn} converges in measure to f. 
Conversely, suppose C1 and C3 hold. Then, there is a sequence {gn} of integrable simple 
functions such that {gn} is Cauchy in the mean and converges in measure to g.  
Theorems 2.4.3 and 2.3.1 imply there is a subsequence {gn,k} of {gn} that is convergent to f a.e. 
Denote this subsequence by {fk}. Then, {fk} satisfies C1 and C2. 

 
Result: If f is integrable, then f is a.e. real-valued. (See result preceding Theorem 2.4.1.) 
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Defn 2.6.2: Let f be an integrable function and let C1 and C2 hold. The integral of f is defined to be 
the number lim ∫ fn dm and is denoted by ∫ f dm . Hence, ∫ f dm = lim ∫ fn dm . 
 
Theorem 2.6.2: The definition of ∫ f dm is independent of the sequence {fn} chosen. 

Proof: See lemmas in text, pages 43-46. 
 
Defns (2.6.2, 2.6.5, 2.6.6): Suppose E is a measurable set and f an integrable function. Then, the 
integral of f over E is defined by  

∫E f dm = lim ∫ χE fn dm  
If we are using a Lebesque measure space, we often denote the Lebesque integral of f as 

 ∫E f(x) dx 
If f is a non-negative measurable function and not integrable on the set E, then we say that 

∫E f dm = 4. 
 
HOMEWORK: page 47 #1, 2, 3, 7 
 
 
 
Theorem 2.7.1: Let f and g be integrable functions and a and b be real numbers. Then, 
(i) ∫ (a f + b g) dm = a ∫ f dm + b ∫ g dm  

Pf: Take limits in 2.5.1. 
 
(ii) If f > 0 a.e., then  ∫ f dm > 0. 
 
(iii) If f > g a.e., then  ∫ f dm >  ∫ g dm . 
 
(iv) | f | is integrable and |  ∫ f dm | <  ∫ | f | dm  

Pf: Note f < | f | and -f < | f |. Apply (iii). 
 
(v) ∫ | f + g | dm <  ∫ | f | dm +  ∫ | g | dm  
 
(vi) m < f < M a.e. on a measurable set E with m(E) < 4 yields m m(E) <  ∫E f dm < M m(E). 
 
(vii) If f > 0 a.e. and E and F are measurable sets such that ECF, then  ∫E f dm <  ∫F f dm . 
 
(viii) If f > m > 0 on a measurable set E, then m(E)< 4 . 

Pf: Assume m(E) is infinite.  
By problem 2.6.2, E is σ-finite.  
Hence, there exist a monotone-increasing sequence of sets Ek with m(Ek)< 4 and lim Ek = E. 
By (vii), ∫E f dm >  ∫E k f dm > m m(Ek) which approaches oo. Contradiction. 
 

Defn 2.7.1: A sequence {fn} of integrable functions is said to be a Cauchy sequence in the mean if   
 

∫ | fn - fm| dm →0 
 
as n and m get large. If there is an integrable function f such that   

 
∫ | fn - f| dm →0 

 
as n gets large, then we say that {fn} converges in the mean to f. 



 
Result: If {fn} is convergent in the mean to f, then it is also Cauchy in the mean. 
 
Result:  Suppose f and g are measurable on the measurable set E and 0 < g(x) < f(x) over E.  Then, f 
integrable over E implies g is also integrable over E. 

Pf:  4 > ∫E f dm = ∫E (f – g) dm + ∫E g dm.  Since f – g > 0, then ∫E (f – g) dm > 0 and so both  
terms on the right must also be finite. 

 
Result:  Assume that f is nonnegative and integrable over a measurable set E.  Then, for any 0>0, 
there is a corresponding δ>0 such that for every set AfE with m(A) < δ we get ∫A f dm < 0. 
 
Result: Let {fn} be a sequence of simple functions convergent to f and Cauchy in the mean. Then, lim 
∫ fn dm exists.  

Pf: Consider | ∫ fn dm - ∫ fm dm | < ∫ |fn - fm| dm which approaches zero since convergent implies 
Cauchy. 

 
Defn:  Convergence in measure – see Friedman.  fn converges to f “in measure” provided the 
collection of x-values for which the sequence fn(x) does NOT converge to f(x) has measure zero. 
 
Theorem 2.7.2: If {fn} is a sequence of integrable functions that converges in the mean to an 
integrable function f, then {fn} converges in measure to f. 

Pf: Let ∈>0 be given and define En = { x | |fn(x) - f(x) | > ∈ }.  
By Theorem 2.7.1, m(En)<4 and  
 

∫E | fn - f | dm >  ∫E n | fn - f | dm > ∈ m(En).  
 
Hence, m(En) approaches zero as n gets large. 
 

Theorem 2.7.3: If f is an a.e. nonnegative, integrable function, then  ∫E f dm = 0 if and only if f=0 a.e. 
on E. 

Pf: If f=0 a.e., then HW 2.6.1 with g=0 everywhere yields  ∫E f dm = 0. 
On the other hand, if  ∫E f dm = 0, then there exists a sequence {fn} that is Cauchy in the mean 
and this is convergent in measure to f.  
Since f > 0, then the same is true for |fn|. So,  

lim  ∫E fn dm =  ∫E f dm = 0. 
Hence, {fn} converges in the mean to zero.  
Theorem 2.7.2 implies that {fn} converges in measure to zero and thus f=0 a.e. 
 

Theorem 2.7.4: Let f be measurable and E a set of measure zero.  
Then, f is integrable on E and  ∫E f dm = 0. 

Pf: Notice that χE f = 0 a.e. By Problem 2.6.1, χE f is integrable and ∫ χE f dm = 0. 
 

Theorem 2.7.5: Let f be an integrable function that is positive everywhere on a measurable set E.  
If ,/`E f dm = 0, then m(E)=0. 

Pf: Let En = {x∈E | f(x) > 1/n }.  
Then, {En} is a monotone increasing sequence of sets and E - U En has measure zero.  
Hence, m(E) = lim m(En).  
Since m(En) is finite, 0 = ∫E f dm > ∫E n f dm > m(En)/n > 0.  
Thus, m(En)=0 for all n and so m(E)=0. 
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Theorem 2.7.6: Let f be an integrable function. If ∫E f dm = 0 for every measurable set E, then f=0 a.e. 
Pf. By Theorem 2.7.5, the set where f(x)>0 has measure zero.  
Similarly, the set where f(x)<0 has measure zero.  
Hence, f=0 a.e. 
 

HOMEWORK: page 50 #2, 3, 4, 6 
 
Littlewood’s Principle (Proposition 23):  Let E be measurable with m(E)<4 and {fn} measurable on E 
such that for each x in E, fn(x)→f(x), for some real-valued function f.  Then, for any 0 > 0 and δ > 0, 
there is a measurable set AfE with m(A) < δ and an integer N such that for all xóA and n > N, 

| fn(x) – f(x) | < 0. 
Pf:  See page 73 of Royden.  The conclusion implies that the set of x-values A for which fn(x) 
and f(x) may NOT be close is arbitrarily small 

 
Bounded Convergence Theorem:  Let {fn} be a sequence of measurable functions over a set E of 
finite measure that converges on E to a measurable function f. Further, suppose there exists an 
constant M such that |fn(x)| < M, for all n. Then,  

lim n→4 ∫E fn dm = ∫E f dm. 
Pf:  Using Littlewood’s Principle with m(A) < 0/(4M) yields | fn(x) – f(x) | < 0/( 2m(E) ).  
Therefore,  

| ∫E fn dm – ∫E f dm | = | ∫E (fn – f) dm | 
< ∫E | fn – f | dm 
= ∫E-A | fn – f | dm + ∫A | fn – f | dm 
< ∫E-A 0/( 2m(E) ) dm + ∫A 2M dm 
< 0/2 + 0/2 = 0. 

The conclusion follows 
 
Fatou’s Lemma (Theorem 9):  Suppose {fn} is a sequence of nonnegative measurable functions 
which converge to f a.e. on E.  Then, ∫E f dm < lim inf ∫E fn dm. 

Pf:  WOLOG, we can assume the convergence is everywhere since we can throw out integrals 
over sets of measure zero.   
Choose h to be an arbitrary but bounded and measurable function with h < f and h(x) = 0 
outside a set E’ with m(E’) < 4.  For each n, define hn(x) = min{ h(x), fn(x) }. 
Then, hn is bounded and equals zero outside E’.   
Since h < f, hn(x)→h(x) for each x in E’. 
The Bounded Convergence Theorem implies 
 

∫E h dm = ∫E - E’ h dm + ∫E’ h = ∫E’ h = lim ∫E’ hn dm = liminf ∫E’ hn dm < liminf ∫E’ fn dm. 
 
Taking the supremum on both sides over all h < f and applying the definition of integral implies 
the result. 
 

Monotone Convergence Theorem (MCT):  Suppose {fn} is an increasing sequence of nonnegative 
measurable functions which converge to f a.e. on E.  Then  ∫E f dm = lim ∫E fn dm. 
Pf:  By Fatou’s Lemma, we have ∫E f dm < lim inf ∫E fn dm. 
However, since the sequence is increasing, then fn(x) < f(x) and so ∫E fn dm < ∫E f dm. 
Take the lim sup of both sides to get 

. lim sup ∫E fn dm < ∫E f dm < lim inf ∫E fn dm 
and so the limit exists and the result follows. 
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Corollary 11:  If un is a sequence of nonnegative measurable functions and f = 3 un, then 
∫ f = 3 ∫ un. 

Pf:  Take fn to be the sequence of partial sums. 
 
Corollary 12:  Let f be a nonnegative function and {Ek} disjoint and measurable with E = c Ek.  Then  

∫E f = 3 ∫Ek f. 
Pf:  Take uk(x)= f(x) χEk(x) . 

 
 
Reminder:  For general measurable functions f = f + - f -.  To integrate f, apply the integral to these 
component parts. 
 
Lebesgue Dominated Convergence Theorem (LDCT) – page 91 
 
Generalized Dominated Convergence Theorem (G-LDCT) – page 92 
  
 
 



METRIC AND Lp SPACES 
 

Defn: A metric space will describe a set X with a function ρ so that for any two points (x,y), there 
corresponds a real number ρ(x,y) such that:  

• ρ(x,y) > 0 and ρ(x,y)=0 if and only if x=y 
• ρ(x,y) = ρ(y,x) 
• ρ(x,z) < ρ(x,y) + ρ(y,z), for any z 

 
Examples of metric spaces:   

1. n-dimensional reals ún using the Euclidean metric 
2. sequence space R4 
3. sequence space R1 
4. sequence space c 
5. C([a,b]) = continuous functions defined on the interval [a,b] with ρ(f,g) = max | f(x)-g(x) | 

 
Lp Spaces: Given a positive number p, denote by Lp(X) the collection of functions defined on X such 
that |f|p is integrable. Define the "p-norm" of a given function f to be:  
 

|| f ||p = { ∫ |f|p dm }1/p

 
Similarly, define L4(X) to be the collection of measurable and essentially bounded functions.  
 
Define the "4-norm" of a given function to be:  

|| f ||4 = essential supremum |f| 
 
Holder's Inequality: Assume 1/p + 1/q = 1. If f ∈ Lp(X) and g ∈ Lq(X), then f g ∈ L1(X) and  

|| f ||1 < || f ||p || g ||q
Pf: See page 96  

 
 
Minkowski's Inequality: Let 1 < p < 4. Then, f,g ∈ Lp(X) implies f+g ∈ Lp(X) and  

|| f+g ||p < || f ||p + || g ||p. 
Pf: See page 97  

 
 
Theorem 3.2.3: If 1 < p < 4, then Lp(X) is a complete metric space.  

Pf: See page 98  
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Extra Material 
Friedman Section 1.4-1.7 

 
Defn: The class of sets K is a sequential convering class if empty set∈K and if for any set A∈K, 
there is a sequence of sets En∈K such that A C U En. 
 
Construction of Outer Measures: The previous work shows that if one can construct an outer 
measure, then restricting the domain of the outer measure to measurable sets yields a measure for 
that collection of sets. However, this assumes that one is able to start with some given outer 
measure. Such an outer measure can be constructed from any collection of sets by using the 
following: 
Suppose we have any nonnegative set function �with domain K such that �(empty set)=0. For each 
set A of X, create the set function 

m*(A) = inf{ � �(En) | En∈K, A C U En } 
 

Theorem 1.4.1: (Show that the method of constructing an outer measure above indeed yields an 
outer measure.) 
Pf: 
(i) Obviously the domain consists of all subsets of X by the way m* is defined. 
(ii) m* is nonnegative since l is nonnegative 
(iv) m* is monotone since if ACB, then any covering of B also covers A. Hence, there could be a 
smaller infinum for A and thus a smaller value for m*(A). 
(iii) We must show m* is countably additive: 

Let An be any sequence of sets and take any ∈ > 0. 
Since K is a convering class, for each An, there is a sequence of covering sets Enk such that  

m*(A) + ∈/2n > � �(Enk). 
So, U An C U Enk and thus by monotonicity, m*( U An) < m*( U Enk). 
Hence, m*( U An) < m*( U Enk) < m*(A) + ∈/2n = m*(A) + ∈. Since ∈ is arbitrary, we have m*( 
U An) < m*(A) as desired. 

(v) Since m* is nonnegative, the the smallest it can be is zero. Since K is a convering class, empty 
set∈K and so A=empty set can be convered most simply by itself with �(empty set)=0. 
 
HOMEWORK: page 12, #2, 3 
 
Defn: A measure m with domain A is said to be complete if N C E∈A and m(E)=0 implies N∈A. 
 
Result: The measure constructed in Theorem 1.3.1 is complete. 

Pf: By (i) of proof, any set with outer measure zero is measurable and thus in A. 
 

Theorem 1.5.1: Any measure can be extended to be a complete measure. 
 
Lebesgue Measure: Let X = Rn = { (x1, x2 x3 ... xn) where each component is a real number }.The 
collection K of open intervals forms a sequential convering class of X. Define the set function �by 
�(empty set)=0 and for each non-null interval I (see defn on page 13) 

�(I) = � (bk - ak) = product of the lengths of each component's interval width. 
From Theorem 1.4.1, this set function yields an outer measure which we call Lebesgue outer 
measure. By Theorem 1.3.1, the restriction of this outer measure yields a measure (which is 
complete) called Lebesgue measure. The measurable sets are called Lebesgue measurable sets. 
 
HOMEWORK: page 14, #1, 2, 3 
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Defn: A metric � is a function defined on a set of points X satisfying positive definiteness, symmetry 
and the triangle inequality. The set of points X together with the metric �is called a metric space. 
Given a metric �, the distance between two sets A and B is defined by �(A,B) = inf { �(x,y) } x∈A 
and y∈B }. If either set is a single point (say A={x}), we write this distance as �(x,B). For a given set 
A, its diameter is given by �(A) = sup { �(x,y) } x∈A and y∈A } and the set is bounded if �(A) is finite. 
 
Defns: For any element x and ∈>0, an open ball is the set B(x, ∈) = { y | �(x,y) < ∈ } with x called the 
center and ∈ called the radius. A closed ball allows equality in above and is denoted `B(x, ∈). A 
sequence xn is said to be convergent to y if r(xn,y)-->0 as n-->oo. Open sets, closure, closed set, 
interior, Cauchy sequences, complete metric space....see page 17. 
 
 
HOMEWORK: page 17, #2, 3, 4, 6 
 
 
 

Extra Material 
Friedman Sections 2.3-2.6 

 
 
Defn: A sequence {fn} of a.e. real-valued, measurable functions is said to converge almost uniformly 
to a measurable function f if for any ∈>0, there exists a measurable set E such that m(E) < ∈ and {fn} 
converges to f uniformly on X - E. 
 
Theorem 2.3.1: If a sequence {fn} of a.e. real-valued, measurable functions converges almost 
uniformly to a measurable function f, then {fn} converges to f a.e. 

Pf: Since {fn} converges almost uniformly to f, for any integer m>0 there is a set Em such that 
m(Em) < 1/m and {fn} converges to f uniformly on X - Em. Hence, {fn} converges to f on F = U 
(X-Em) = X - ∩ Em.  
But m(X - F) = m( ∩ Em) < m(Em) < 1/m for any positive integer m. Thus m(X - F) = 0 and so {fn} 
converges to f a.e. 

 
Theorem 2.3.2: (Egoroff's Theorem) Let X be a finite measure space. If a sequence {fn} of a.e. real-
valued, measurable functions converges a.e. to f, then {fn} converges to f almost uniformly. 

Pf: Since f and {fn} are real-valued a.e., then it is sufficient to assume that all functions are real-
valued everywhere. For positive integers k and n, define  

En,k = ∩ m=n...{x | |fm(x) - f(x) | < 1/k }. 
Notice, as n increases, the sets En,k form a monotone increasing sequence of sets. Since {fn} 
converges a.e. to f, then lim En,k = E, where E is a set such that X-E has measure zero. By 
Theorem 1.2.1,  

lim m(x- En,k) = m(X-E) = 0. 
Hence, for any ∈>0 there is an integer nk such that m(X - En,k) < ∈/2k, if n > nk. 
If F = ∩ En,k, then F is measurable and  

m(X - F) = m(X - ∩ En,k) = m( U (X-En,k) ) < � m( X-En,kk ) < ∈. 
Hence, on the set F, the sequence {fn} is uniformly convergent to f. 

 
 
Theorem 2.4.1: If a sequence {fn} of a.e. real-valued measurable functions converges almost 
uniformly to a measurable function f, then {fn} converges in measure to f. 

Pf: For and ∈>0 and �>0, there is a set E with m(E)<� such that |fn(x) - f(x)| < ∈, for all x ∈ X-
E and n sufficiently large. This implies convergence in measure. 
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Corollary 2.4.2: If m(X) < oo, then any sequence {fn} of a.e. real-valued, measurable functions that 
converges a.e. to an a.e. real-valued, measurable function f is also convergent to f in measure. 

Pf: Apply Theorem 2.4.1 and Egoroff's Theorem. 
 
HOMEWORK: page 39 #1, 2 

 
Lemma 2.8.1: If {fn} is a sequence of integrable simple functions yielding the integrable function f, 
then limn-->oo ∫ | fn - f | dm = 0 

Pf: Consider the sequence {gk} = { | fn - fk | }, for any positive integer n.  
Notice that | |a| - |b| | < | a - b |. 
Hence,  

∫ | gm - gk | dm = ∫ | | fn - fm | - | fn - fk | | dm  < ∫ | fm - fk | dm -->0 
as m and k get large, since {fn} is Cauchy in the mean.  
Thus, {gk} is also Cauchy in the mean. Further, gk converges to | fn - f | a.e. 
Applying the definition of integral yields the result. 
 

Theorem 2.8.2: If {fn} is a sequence of integrable functions which are Cauchy in the mean such that 
lim fn = f, an integrable function, then lim n→4 ∫ fn dm = ∫ f dm. 

Pf: By Lemma 2.8.1, for each n, there is a sequence of integrable simple functions {fn,k} such 
that lim k→4 ∫ | fn - fn,k | dm = 0. 
Hence, for each n, there is a term ffn of the sequence fn,k such that ∫ | fn - ffn | dm < 1/n2. 
The proof of Theorem 2.7.2 with ∈=1/n yields m{ x | | fn(x) - ffn(x) | > 1/n } < 1/n. Hence, {ffn } is 
Cauchy in the mean and converges in measure to f. Therefore, f is integrable and  

∫ f dm= lim n→4 ∫ ffn dm = limn→4 ∫ fn dm 
 

Theorem 2.8.3: If {fn} is a sequence of integrable functions that is Cauchy in the mean, then there is 
an integrable function f such that {fn} converges in the mean to f. 

Pf: Extending the proof of Lemma 2.5.2 applied to any integrable function, we conclude that 
{fn} is convergent in measure to a measurable function f. Theorem 2.8.2 implies that f is 
integrable. Hence, the sequence {| f - fn |} is a sequence of integrable functions that is Cauchy 
in the mean and that converges in measure to 0.  
Theorem 2.8.1 implies lim n→4 ∫ | f - fn | dm = 0 
 

Defn 2.8.1: A real-valued set function 8 is said to be absolutely continuous is for any ∈>0, there 
exists a number Δ>0 such that for any measurable set E with m(E)< Δ, |8(E)|< ∈. 
 
Theorem 2.8.4: Let f be an integrable function and let l be the set function defined by �(E) = for all 
the measurable sets E. Then, � is completely additive and absolutely continuous and is called the 
indefinite integral of f. 

Pf: see text. 
 

 
Theorem 2.9.1: (Lebesque's Bounded Convergence Theorem - LBCT) Let {fn} be a sequence of 
integrable functions that converges either in measure or a.e. to a measurable function f. Suppose 
there exists an integrable function g such that |fn(x)| < g(x) a.e. for all n.  
Then, f is integrable and limn-->oo ∫ | f - fn | dm = 0. 

Pf:  
Case I: Suppose {fn} converges to f in measure.  
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We must show that {fn} is a Cauchy sequence in the mean. If so, then by Theorem 2.8.3 an 
integrable function h exists such that lim n→4 ∫ | h - fn | dm = 0. Theorem 2.7.2 implies then that 
{fn} converges in measure to h. Since f is also the limit in measure of {fn}, we have f = h a.e. 
and so f is integrable. Replacing h with f gives the result. 
 
To show {fn} is a Cauchy sequence in the mean, see Friedman, page 55. 
 
Case II: Suppose {fn} converges a.e. to f. Show {fn} also converges in measure to f and apply 
Case I. 
Set N = {x | |f(x)|>g(x) or |fn(x)|>g(x) } and for any ∈>0, set En = U k=n.. { x | |fk(x) - f(x) | > ∈}.  
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Notice, { x | |fn(x) - f(x) | > ∈ } C En. 
Then, En C {x | g(x) > ∈/2 } U N.  
Since g is integrable, HW 2.7.2 implies that m(En) is finite. Since fn converges to f a.e., 
m(En)=0. 
Therefore, by Theorem 1.2.1, lim m(En)=0 and so {fn} converges to f in measure. 
 

HOMEWORK: page 56 #1, 4 
 
Theorem 2.10.1: Let f and g be measurable. If |f| < g a.e. and g is integrable, then f is integrable. 

Pf: HW problem 2.6.3 implies that f is integrable if and only if |f| is integrable. Indeed,  
 
=> Assume |f| is integrable. Then, | ∫ f dm | < ∫ |f| dm, which is finite by assumption. 
 
<= Assume f is integrable. Then, ∫ |f| dm = ∫A |f| dm + ∫B |f| dm B < ∫A f  dm + ∫+

B f  dm  -

both of which are finite, where A={x: f(x)>0} and B={x:f(x)<0}. 
 
So, if we can show |f| is integrable, then so is f. 
However, by T2.2.5, we can approximate any measurable function f with an increasing 
sequence {hn} of simple functions. So, hn<|f|<g implies {hn} < g. Since g is integrable, using HW 
2.7.2 implies the {hn} are also integrable. Apply the LBCT to complete. 
 

Theorem 2.10.4: (Lebesque Monotone Convergence Theorem = LMCT) Let {fn} be a monotone 
increasing sequence of non-negative integrable functions and let f(x) = lim fn(x).  
Then, limn-->oo ∫ fn dm= ∫ f dm. 

Pf: If f is integrable, then fn < f easily implies ∫ fn dm< ∫ f dm, for all n and so  
limn-->oo ∫ fn dm < ∫ f dm. 

If f is not integrable, then is infinite and so the inequality still holds. It remains to show that 
equality holds. 
If limn-->oo ∫ fn dm is infinite, then equality will hold. So consider the case when this limit is finite. 
Show C1 and C2 hold. By hypothesis C2 holds. Hence, we must show the the sequence fn is 
Cauchy in the mean. Consequently, consider fn and fm, where we'll assume that m>n.  
By monotonicity, fm > fn, and so fm - fn > 0. 
Hence, ∫ | fm - fn | dm = ∫ ( fm - fn ) dm = ∫ fm dm - ∫ fn dm  which approaches zero as m and n get 
large. 
Thus, C1 and C2 hold. By Theorem 2.8.2, f is integrable and the result holds. 
 

Theorem 2.10.5: (Fatou's Lemma) Let {fn} be a sequence of nonnegative integrable functions and let 
f(x) = lim inf fn(x). Then  

lim infn-->oo ∫ fn dm  < ∫ f dm.   
Thus, if lim infn-->oo ∫ fn dm  is finite, f is integrable. 

Pf: If lim infn-->oo ∫ fn dm is infinite, the inequality is obviously true. So, suppose it is finite. 
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Set gn = infj>n fj(x). Then, {gn} is a monotone-increasing sequence of non-negative integrable 
functions and gn < fn. Hence, lim ∫ gn dm< lim inf ∫ fn dm  which is finite. 
Since lim gn = lim fn = f, apply the LMCT to see that f is integrable and limn-->oo ∫ gn dm= ∫ f dm. 
Combine with the above inequality. 
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