Notes for Topics in Higher Algebra - MAT 6520
Dr. John Travis

Herstein, Topics in Algebra, 2nd edition
Read first chapter of text.  Review sets, equivalence relations, Power Set S*; mapping - one to one, onto, inverses, composition; the integers - divisibility, unique factorization, prime numbers, congruence modulo n. 

HOMEWORK:  page 9 #8; page 17 #1, 6; page 23 #2, 8, 14 

Defn 2.1.1: 

· Binary Operation - a correspondence on a set A which assigns to each ordered pair (a,b), for a and b in A, a uniquely determined element aob of A.
· Groupoid - a nonempty set A along with a binary operation defined on A.
· Group - A groupoid where the binary operation satisfies the following axioms:
· Existence of identity -  aG,  eG  eoa = aoe = a.
· Existence of inverses -  aG,  a-1G  a-1oa = aoa-1 = e.
· Associative -  a, b, cG, (aob)oc = ao(boc).
· Abelian -  a, bG, aob = boa.
Notation:  A group is completely defined by the set G and the operation o.  We will denote such constructions by (G,o).  If the binary operation is understood, we will often talk about the group G without explicitly writing the operation.  If so, we often write aob = ab or aob=a+b. 

Examples:  The following are abelian groups: 

· (Integers,+)
· (Rationals,+)
· (Reals,+)
· (Complex,+)
· (Rationals-{0},*)
· (Reals-{0},*)
Symmetric Groups:  Consider the set S of permutations of {1,2,3}.  Define the following mappings: 

· r0:   1,2,3 -> 1,2,3
· r1:   1,2,3 -> 2,3,1
· r2:   1,2,3 -> 3,1,2
· m1:  1,2,3 -> 1,3,2
· m2:  1,2,3 -> 3,2,1
· m3:  1,2,3 -> 2,1,3
Then, S3 = {r0, r1, r2, m1, m2, m3 } forms a nonabelian group called the symmetric group of degree 3 under multiplication of permutations. 
Note, mkmk = e. 

Notation:  When writing out correspondences: 

· Right-hand notation:  Using the symmetric group above, m1(2)=3, r1m1(2) = r1(3) = 1.
· Left-hand notation:  Using the symmertic group above, 2 r1m1 = 3m1 = 2
Specific groups with n elements: 

· n=1:
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· n=3:  Only one choice.  Why can't aoa=e or aoa=a?
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· n=4:  Only two choices...the first is called K4, the Klein 4-group;  the other is called C4.
Note, aob can't be a or b since each row and column can't have any repeating terms. 
Thus aob=e (which generates C4) or aob=c (which generates K4). 
For C4, the remainder of the entries follow by forcing unique terms. 
For K4, if also aoc=e, then we have C4 by interchanging c and b.  So, aoc=b and aoa=e. 
Note, for the remainder of terms dealing with b and c, two groups are obtained.  However, these groups are actually identical with only the labels for b and c swapped.
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Congruence Classes:  On the set of integers, define a=b (mod n) <=> a-b is a multiple of n.  

The relation = partitions the integers into congruence classes denoted by [a], where a = {b : a = b (mod n) }.  

Given n, the congruence classes on the integers are [0], [1], [2], ... , [n-1]. 

Define Zn = {[0], [1], [2], ... , [n-1]} and the operation * as follows:

[a]*[b] = [a+b], where + is the normal operation of integer addition. 

Then, (Zn,*) is an abelian group. 

Cyclic Groups:  Given some element a, let G = {ak : k=0, 1, ..., n-1} and define ak * aj = ak+j, if k+j < n and ak * aj = ak+j-n, if k+j > n. 
Then, G is a cyclic group. 

Lemma 2.3.1:  If G is a group, then 

1. The identity element of G is unique.
2.  aG, The inverse of a is unique.
3.  a, x, y G, ax=ay => x=y. (right cancellation)
4.  a, x, y G, xa=ya => x=y. (left cancellation)
5.  a G, (a-1)-1 = a.
6.  a, b G, (ab)-1 = b-1a-1.
Lemma 2.3.2:  If ax=b, then x = a-1b and if ya=b, then y = ba-1. 

Defn 2.3.2:  If G contains a finite number of elements, then G is called a finite group.  If G is a finite group, then the number of elements in G is called the order of G, and is denoted |G| or o(G).  If G contains an infinite number of elements, then G is called an infinite group. 

Theorem 2.4.1:  Let S be a set and let A(S) represent the set of all 1-1 mappings of S onto S.  Then, A(S) is a group under composition of mappings.  If |S| = n, then A(S) is denoted by Sn and is called the symmetric group of degree n. 

Pf:  Let f, g, h  A(S) be arbitrary. 

· Since f and g are 1-1 and onto, so is fog.  Therefore, fog  A(S)
· The identity mapping i  A(S) and is easily 1-1 and onto.
· 1-1 mappings have inverses.  Onto function's inverses are 1-1.  Hence, aA(S) => a-1A(S).
· Easily, the associative property holds.
Note, Sn is non-abelian.
Homework:  page 35 #2, 3, 8, 10, 11 

Defn 2.4.1:  A nonempty subset H of a group G is called a sub-group of G if H is itself a group under the binary operation defined on G. 

Lemma 2.4.1:  A nonempty subset H of a group G is a subgroup <=> 

· a,b H => ab H
· a H => a-1 H
Pf:  Let H be a subgroup.  Then the result is true using the definition of a group. 
Conversely, assume a,b H => ab H and a H => a-1 H. 
Certainly, since the associative law holds on G, it also holds on elements of H. 
So, we only need to show that e H.  However, a H => a-1 H => aa-1 H => e H, as desired.
Lemma 2.4.2:  If H is a nonempty finite subset of a group G, then H is a subgroup of G if H is closed under the multiplication of G. 

Pf:  H closed => the first condition holds in Lemma 2.4.1.  So, to use the previous lemma, it suffices to show that eH and aH => a-1 H. 
Thus, let a  H.  Then, by closed, a, a2, a3, a4, ... must all be elements of H.  

Since H is finite, there exists integers n and m such that an = am, with n>m.  Hence, n-m>0 and an-m = e must be in H. 
Furthermore, since n-m-1>0, a-1 = a-1(an-m) = an-m-1 H. 
Therefore, by Lemma 2.4.1, H is a subgroup.
Examples: 

1. Let G be any group.  Then, G has at least two trivial subgroups:  {e} and G itself.
2. For any integer n, consider G = (Integers,+) with a subgroup H = {nk : k Integers}
3. (Reals - {0},*) has subgroup (Rationals - {0},*)
4. Let G be any group and let aG.  Then, <a> = {ak : k is an integer} is a subgroup of G called the cyclic subgroup generated by a.
Defn 2.4.2:  If a group G contains an element a such that G = <a>, then G is called a cyclic group.  (Note, all cyclic groups will be abelian but not necessarily the converse.) 

Examples: 

1. Let G be any group and let W be a nonempty subset of G.  Set <W> to be the set of all elements of G which can be expressed as a finite product of elements of W raised to integer exponents.  Then, <W> is a subgroup and is the smallest such subgroup containing W.
2. G = (complex-{0},multiplication) and H = set of the nth roots of unity for a fixed positive integer n>2.  Then, H=<W>, where w=cos(2/n) + i sin(2/n).
3. G = (complex-{0},multiplication) and H = (a+bi : a2 + b2 = 1}
COSETS
Defn 2.4.3:  Let G be a group and H a subgroup of G.  If a, b G => ab-1 G, then we say a is congruent to b mod H.  We write this as a = b mod H. 

Lemma 2.4.3:  a = b mod H is an equivalence relation. 

Pf:  Reflexivity: 
Symmetry: 
Transitivity:
Defn 2.4.4:  If H is a subgroup of G and a G, then Ha = { ha : h H} is called a right coset of H in G. 

Lemma 2.4.4:  For all a G, Ha = {x G : a = x mod H} 

Pf:  Let [a] = { x G : a = x mod H}. 
To show Ha is a subset of [a]: 

Let h H. 
Then a(ha)-1 = h-1 H 
Defn of congruence => ha [a]
To show [a] is a subset of Ha: 

Let x [a]. 
Then ax-1 H => h = xa-1 = (ax-1)-1 H => x = ha Ha
Corollary:  Either the intersection of Ha with Hb is empty or Ha=Hb, for any a,b G. 

Corollary:  G = U Ha, where the union is taken over distinct right cosets 

Lemma 2.4.5:  There is a 1-1 correspondence between any two right cosets of H in G. 

Pf:  Suppose a and b are in G and consider the right cosets Ha and Hb. 
For each h H, correspond ha Ha with hb Hb.  That is, given a and b, define a function fa,b(h) = hb. 
1-1:  Suppose h1a = h2b.  Since these are elements in G, the right cancellation law => h1 = h2. 
onto:  Easy since any element of Hb can be written as hb, for some h H which yields a pre-image ha.
Corollary:  |H| = |He| = |Ha| 

Theorem 2.4.1:  (Lagrange)  If G is a finite group and H is a subgroup of G, then o(H) is a divisor of o(G). 

Pf:  Let H be a subgroup of the finite group G. 
Let k be the number of distinct right cosets of H in G. 
Lemmas 2.4.4 and 2.4.5 imply that any two distinct right cosets of H in G must have no elements in common and each has |H| elements. 
Indeed, G = H U Ha1 U Ha2 U Ha3 U ... U Hak-1 . 
Since any a G must be in the coset Ha, then the right cosets of H partition G and so we must have k |H| = |G|.
Defn 2.4.5:  If H is a subgroup of G, then index of H in G is the number of distinct right cosets of H in G.  We shall denote this number by iG(H) or by [G:H]. 

Corollary:  If G is a finite group and H is a subgroup of G, then |G| = [G:H] * |H|. 

Defn 2.4.6:  If G is a group and a G, the order (or period) of a is the least positive integer m such that am = e.  If no such integer exists, we say the group is of infinite order.  We denote the order of a by o(a). 

Corollary 2.4.1:  If G is a finite group and a G, then o(a) | o(G). 

Pf:  Consider the subgroup H = <a> = {e, a, a2, a3, ...} 
Easily ao(a) = e. 
Further if (a) had fewer elements than o(a),  then ai = aj for some terms in the sequence where 0 < i < j < o(n) => aj-i = e, which is a contradition to the definition of o(n). 
Apply Lagrange's Theorem to the subgroup H.
Corollary 2.4.2:  If G is a finite group and a G, then ao(G) = e. 

Pf:  Corollary 2.4.1 => o(a) | o(G) => o(G) = m o(a), for some integer m. 
Therefore, ao(G) = am o(a) = (ao(a))m = em = e.
Euler Function:  Let (1)=1 and for n>1, (n)=number of positive integers less than n which are relatively prime to n. 

Ex:  (6)=2 and (p)=p-1, when p is a prime. 

Corollary 2.4.3:  (Euler)  If n is a positive integer and a is relatively prime to n, then a(n)= 1 mod n. 

Pf:  Given n, consider the set of all positive integers less than n which are relatively prime to n. 
This set is a group (HW 2.3.15) under multiplication mod n. 
Certainly, this group has order (n). 
Apply Corollary 2.4.2 to this group to get the result.
Corollary 2.4.4:  (Fermat)  If p is a prime number and a is any integer, then ap = a mod p. 

Pf:  Suppose p is prime.  Then (p)= p-1. 
If a is relatively prime to p, then Corollary 2.4.3 => ap-1 = 1 mod p => ap = a mod p. 
If a is not relatively prime to p, since p is prime,  p | a and so 0 = ap = a mod p
Corollary 2.4.5:  If G is a finite group whose order is a prime number p, then G is a cyclic group. 

Pf:  Let G be a finite group with prime order p. 
Then G has no nontrivial subgroups since by Theorem 2.4.1 implies any subgroup H satisfies o(H) | p means o(H)=1 or o(H)=p. 
If o(H)=1, then H={e}.  If o(H) = p, then H=G. 
Thus for any a G where a is not e, let H = (a). 
Then, H is a subgroup of G and so must contain at least two elements, namely a and e. 
Hence, H = G and G = (a) is a cyclic group.
Theorem:  If H and K are subgoups of a group G such that K is a subset of H and if H and K both have finite index in G, then [G:K] = [G:H] [H:K]. 

Pf: see text

Notation:  If H and K are subgroups of G, then HK = { hk : hH and kK}

Lemma:  Assume H and K are subgroups of G. Then, HK is a subgroup of G ( HK = KH.

Pf:  Assume HK is a subgroup of G. 

Then, xHK implies x-1HK implies x-1 = hk.  But, x = (hk)-1 = k-1 h-1KH.  Similarly for the other way.

Conversely, suppose HK = KH.  

Easily, eHK.

Suppose x,yHK.  Then, there are h1,h2H and k1,k2K such that x=h1k1 and y=h2k2.

So, k1h2 KH = HK implies there is h3 and k3 such that k1h2= h3k3.

Therefore, xy = h1k1h2k2 = (h1h3)(k3k2)HK.

Furthermore, x-1 = k-1h-1 = h4-1 k4-1 HK, and so HK is a subgroup.

Corollary:  If G is an abelian group and H and K are subgroups of G, then HK is a subgroup of G>

Theorem:  If H and K are subgroups of a finite group G, then | HK | = |H| |K| / |H(K|

Pf:  Case 1:  H(K = {e}

Suppose hk = ab.  Then, a-1h = bk-1, where the left side is in H and the right side is in K.

Therefore, a-1h = e = bk-1 and so h=a and k=b.  Thus, by the multiplication principle, | HK | = |H| |K|.

Case 2:  For each element cH(K, if hkHK, then hk =  (hc-1)(ck) HK.

Therefore, each hk is counted | H(K | times

Further, if hk = ab, then as in case 1, a-1h = c = bk-1, where cH(K.

So, a = hc-1 and b = ck, which have already been accounted for.

Therefore, |H| |K| = | HK | | H(K | and the result follows.

HOMEWORK:  page 46 #2, 3, 5, 6, 9, 16, 25, 27, 30, 33

Normal Subgroups and Quotient Groups

Ex:  S3 using H = {r0, m1} as a subgroup implies the following:

Right Cosets:  H, Hm2 = Hr2 = {m2, r2} and Hm3 = Hr1 = {m3, r1}

Left Cosets:  H, m2H = {m2, r1} and m3H = {m3, r2}

So, for this setup, every right coset is also a left coset.

Ex:  S3 using N = {r0, r1, r2} as a subgroup implies the following:

Right Cosets:  N and Nm1 = {m2, m2, m3}

Left Cosets:  N and m1N = {m1, m3, m2}

So, for this setup, every right coset is also a left coset with the same representer.

Defn:  A subgroup N of a group G is called a normal subgroup of G if gng-1N, for all nN and for all gG.

Notation:  N(G means that N is a normal subgroup of G.

Lemma 1:  N(G (gNg-1 N for all gG.

Pf:  Suppose N(G.  Then, gng-1N, for all nN and for all gG and so containment one way.

Further, if n nN, , then n = (gg-1)n(gg-1) = g(g-1ng)g-1 = g m g-1 which implies containment the other way.

Conversely, if gNg-1 N for all gG, then clearly gng-1N.

Lemma 2:  A subgroup N of a group is normal ( every left coset of N in G is also a right coset of N in G.

Pf:  Assume N(G.  Lemma 1 implies gNg-1 N or gN = Ng, for all gG.

Conversely, suppose that every left coset of N in G is also a right coset of N in G.

For any gG, there is some a in G such that gN = Na.

Since right cosets are either disjoint or equal and g gN, then gNa implies Na = Ng and so gN = Ng.

Lemma 3:  N is a normal subgroup of G ( the product of two right cosets of N in G is again a right coset of N in G.

Pf:  Assume N(G.  Let Na and Nb be right cosets in G.  

Then, Na = aN and Nb = bN implies NaNb = N(aN)b = N(Na)b = (NN)(ab)  = N(ab).

Conversely, suppose the produce of two right cosets is another right coset.

Thus, NaNb = Nc, for some cG.

Note, ab NaNb = Nc implies N(ab) = Nc = Na Nb.

Finally, gNg-1 = (eg)(ng-1)Ng Ng-1 = N(gg-1) = N

Theorem:  Let N(G.  Define G/N to be the set of all distinct right cosets of N in G.  Then G/N is a group.

Pf:

· If Ng G/N, then Ng N = Ng Ne = Nge = Ng.  Similarly, N Ng = Ng.  Hence, N acts as an identity element.

· Ng and Ng’ G/N implies Ng Ng’ = N (gg’) G/N.  Hence, G/N is closed.

· Ng G/N implies Ng-1 G/N and Ng Ng -1= N.  So, G/N contains inverses.

· Na, Nb, Nc G/N implies (NaNb)Nc = N abc = Na(bc) = Na Nbc = Na (NbNc).  So, G/N is associative.

Therefore, G/N is a group.

Corollary:  | G/N | = |G| / |N|

Pf:  By Lagrange’s Theorem noting [G;N] = | G/N |

HOMOMORPHISMS

Defn:  Let G and G’ be groups.

· A mapping q:G(G’ is a homomorphism if for any a,b G, ((ab) = ((a) ((b).  

· If ( is a homomorphism and ( is 1-1, then q is called an isomorphism

· G and G’ are isomorphic groups if there exists an isomorphism from G onto G’.  Write G (G’

Examples:  

· The trivial homomorphism (:G(G’ by ((g) = e’, for all g G.

· The identity homomorphism (:G(G by ((g)=g, for all g G.

· For nonzero n, (:(Z,+)((nZ,+) by ((k) = nk, for all k (Z,+).  This is an isomorphism and therefore the additive group of integers is isomorphic to any of its subgroups.

· For n>1, (:(Z,+)((Zn,() where ( is addition modulo n.  Define ((k) = [k], for all k (Z,+).  Note, ((k+m) = [k+m] = [k] ( [m] = ((k) ((m).  Clearly onto but not 1-1.

· (:(Z,+)(({-1,1},() by ((k) = 1, if k is even and ((k) = -1,  if k is odd.  This yields a homomorphism which is onto but not 1-1.

Theorem:  Let G be a cyclic group.

· If G is infinite, then G ( (Z,+)

· If G is finite, then G ( (Zn,(), with n = |G|.

Pf:  Assume G = <a>.

If G is infinite, define ((ak) = k, for all ak in G.

If G is finite, define ((ak) = [k], for k=0, 1, …, n-1 where G = {e, a, a2, … , an-1}.

Remark:  Isomorphism is an equivalence relation between groups.

Lemma:  Let G by a group and let N be a normal subgroup of G.  Then the mapping (:G(G/N defined by ((g) = Ng is a homomorphism from G onto G/N.

Pf:  

