Advanced Calculus Notes Dr. John Travis Mississippi College

Based upon "An Introduction to Analysis", Wade, 3rd edition

CHAPTER 4

4.1 – Derivative: A given function f is *differentiable* at the point a provided

(1)
$$
f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
$$

exists. If so, then f'(a) is called the *derivative* of f(x) at x=a. Notice that h \rightarrow 0 is equivalent to x \rightarrow a and so the definition formula can be rewritten (using $h = x - a$) as

$$
f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.
$$

Further if we set

(2)
$$
F(x) = \frac{f(x) - f(a)}{x - a}
$$

then $f'(a) = \lim_{x \to a} F(x)$. Hence, if $F(x)$ is continuous at x=a, then $f'(a) = F(a)$.

4.2 – Theorem: f differentiable $\leftrightarrow \exists$ continuous F such that $f(x) = F(x)(x-a) + f(a)$ and $f'(a) = F(a)$ Pf: If f is differentiable, then f'(a) exists. So, define F(x) using (2) if $x \neq a$ and F(a) = f'(a). The result follows.

Conversely, if F exists, then take the limit as x approaches a to get the alternate form of the deriviative.

4.3 – Alternate Characterization of Differentiability: f differentiable $\leftrightarrow \exists$ T(x) = mx such that

(4)
$$
\lim_{h \to 0} \left| \frac{f(a+h) - f(a) - T(h)}{h} \right| = 0
$$

Pf: If f is differentiable, set $T(x) = f'(a) x$.

If (4) holds for some
$$
T(x) = mx
$$
, then - aiming toward (1) - we have

$$
\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} - m = \lim_{h \to 0} \frac{f(a+h) - f(a) - mh}{h} = \lim_{h \to 0} \frac{f(a+h) - f(a) - T(h)}{h} = 0
$$

Hence, the limit exists and we get $m = f'(a)$.

4.4 – Differentiability implies Continuity: f differentiable \rightarrow f continuous

Pf: Assume f is differentiable. Then, using (2) yields

$$
\lim_{x \to a} f(x) = \lim_{x \to a} F(x)(x - a) + f(a).
$$

Since $F(x)$ is continuous, then applying the limit theorems yields the result.

4.6 – Differentiability on Intervals and Continuously Differentiable

Homework: page 90 #4, 6, 8 In Class: 1, 3, 5

4.10 – Rules for Derivatives

4.11 – Chain Rule: f and g differentiable implies gof is differentiable

Pf: By Theorem 4.2, consider $F(x)$ and $G(x)$ given by

$$
f(x) = F(x)(x-a) + f(a)
$$

$$
g(y) = G(y)(y-f(a)) + g(f(a))
$$

Setting $y = f(x)$ and $h(x) = g(f(x))$ yields

$$
g(f(x)) = G(f(x))(f(x)-f(a)) + g(f(a))
$$

or

$$
h(x) = G(f(x))(F(x)(x-a) + f(a) - f(a)) + h(a)
$$

or

 $h(x) = G(f(x))F(x) (x-a) + h(a)$

Set $H(x) = G(f(x))F(x)$. Since f, F and G are continuous, then so is H and we have

$$
h(x) = H(x) (x-a) + h(a)
$$

Thus, by Theorem 4.2, $h(x)$ is differentiable and $h'(a) = H(a)$. This gives $(g \circ f)'(a) = G(f(a)) F(a) = g'(f(a)) f'(a).$

Homework: page 93, #2, 4, 5 In Class: #1, 7, 8

4.12 – Rolle's Theorem: Suppose $a \neq b$, f differentiable on (a,b) and continuous on [a,b].

Then, $f(a) = f(b) \rightarrow \exists c \in (a,b) \ni f'(c) = 0.$

Pf: By the extreme value theorem, there exist M and m so that $m < f(x) < M$. If m = M, then $f'(x) = 0$ always. If not, then f(x) is not constant on [a,b] and so there is a $c \in (a,b)$ where either f(c) = m or f(c) = M. Wolog, assume $f(c) = m$. Then, $f(c+h) - f(c) > 0$, for all h such that $c+h\in (a,b)$. However, for $c+h < c$, the left-hand derivative yields $f'(c) < 0$ and for $c+h > c$, the right-hand derivative yields $f'(c) > 0$. Therefore, $f'(c) = 0$.

4.15 – Mean Value Theorem: Suppose a≠b , f and g differentiable on (a,b) and continuous on [a,b]. Then \exists c \in (a,b) \exists

$$
f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)).
$$

In particular, if $g(x) = x$, then

 $f'(c)(b - a) = f(b) - f(a)$. Pf: Consider $h(x) = f(x) (g(b) - g(a)) - g(x) (f(b) - f(a))$. Notice h(a) = h(b) and h'(x) = f'(x) (g(b) – g(a)) – g'(x) (f(b) – f(a)). Hence, by Rolle's Theorem, \exists c \in (a,b) \Rightarrow h'(c) = 0 which yields the result.

4.17 – Bernoulli's Inequality: Suppose $\alpha > 0$, $\delta > -1$. Then,

 $0 \leq \alpha \leq 1 \Rightarrow (1+\delta)^{\alpha} \leq 1+\alpha\delta$ $1 \leq \alpha \Rightarrow (1+\delta)^{\alpha} \geq 1+\alpha\delta$

Pf: Consider $1 \le \alpha$ and $f(x) = x^{\alpha}$. Apply the MVT to $f(x)$ on the interval from 1 to $1+\delta$ yields c such that α c^{α -1} (1+ δ - 1) = f(1+ δ) – f(δ)

or

 $f(\delta) + \alpha c^{\alpha-1} \delta = f(1+\delta)$ $\delta > 0$ implies $c > 1$ and $\alpha - 1 > 0$ yields $c^{\alpha - 1} > 1$. Thus $\alpha c^{\alpha - 1} \delta \ge \alpha \delta$ or $\delta c^{\alpha - 1} \ge \delta$ δ < 0 implies c < 1 and α -1 > 0 yields c^{α -1} < 1. Thus α c^{α -1} δ $\leq \alpha$ δ or δ c^{α -1} $\geq \delta$

4.18 – L'Hopital's Rule: If $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ or $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$ implies $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ (x) $\lim \frac{f(x)}{f(x)}$ *xg* $f'(x)$ *xg* $f(x)$ $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$. Pf: Uses Generalized Mean Value Theorem

4.24 – Monotonicity and Derivatives: Suppose f continuous on [a,b] and differentiable on (a,b). Then:

- $f'(x) > 0$ for all $x \in (a,b) \rightarrow f(x)$ is strictly increasing for all $x \in (a,b)$
- $f'(x) < 0$ for all $x \in (a,b) \rightarrow f(x)$ is strictly decreasing for all $x \in (a,b)$
- $f'(x) = 0$ for all $x \in (a,b) \rightarrow f(x)$ is constant for all $x \in (a,b)$
- Pf: Suppose $a \le x \le w \le b$. The MVT applied to the interval (x,w) yields $c \in (x,w)$ such that

 $f(w) - f(x) = f'(c)(w - x)$.

 $f'(c) > 0 \Rightarrow f(w) > f(x) \Rightarrow$ strictly increasing

 $f'(c) < 0 \rightarrow f(w) < f(x) \rightarrow$ strictly decreasing

 $f'(c) = 0 \rightarrow f(w) = f(a)$, using $x = a \rightarrow$ contantly equal to $f(a)$ on the entire interval

4.25 – Families of Functions with Common Derivatives: Suppose f and g are continuous on [a,b] and differentiable on (a,b) such that $f'(x) = g'(x)$ for all $x \in (a,b)$. Then, $f(x) = g(x) + C$.

Pf: Let $h(x) = f(x) - g(x)$. Then, $h'(x) = 0$ for all $x \in (a,b)$. Apply 4.24 to obtain $h(x) = C$.

4.26 – 1-1 and monotonicity: f 1-1 and continuous implies f is strictly monotone.

Pf: Suppose f is a 1-1 function and continuous on some non-degenerate interval where $a < b$. The one-to-oneness of f implies $f(a) < f(b)$ or $f(a) > f(b)$. WOLOG, assume $f(a) < f(b)$. For any point c such that $a \leq c \leq b$, if f is NOT strictly monotone, then either $f(c) < f(a) < f(b)$ or $f(a) < f(b) < f(c)$. In the first case, applying the IVT yields a $w \in (c,b)$ with $f(w) = f(a)$ which contradicts 1-1. In the second case, applying the IVT yields a $w\in(a,c)$ with $f(w) = f(b)$ which contradicts 1.1. Therefore, f is strictly monotone.

4.26.1 – 1-1 and the monotonicity of inverses: $f 1$ -1 and continuous implies f^{-1} is also continuous and strictly monotone.

4.27 – Inverse Function Theorem: Suppose f is 1-1 and continuous on an open interval I. If a \in f(I) and f'(f⁻¹(a)) exists and is nonzero, then f⁻¹ is differentiable and

$$
(f^{-1})^{'}(a) = \frac{1}{f'(f^{-1}(a))}
$$

Pf: Theorem 4.26 implies f is strictly monotone and f^{-1} exists and is strictly monotone. WOLOG assume f and f⁻¹ are strictly decreasing.

Since I is open, then $f^{-1}(a) \in (c,d) \subseteq I$.

Since f is strictly decreasing, $f(d) < f(f^{-1}(a)) < f(c)$ and for small h, $f(d) < a + h < f(c)$. Therefore, $d \le f^{-1}(a+h) \le c$ and so $f^{-1}(a+h)$ exists.

Thus, if $x = f^{-1}(a+h)$ and $x_0 = f^{-1}(a)$

$$
f(x) - f(x_0) = f(f^{-1}(a+h)) - f(f^{-1}(a)) = a + h - a = h
$$

intinuity of f⁻¹ we obtain

Using the continuity of f^{-1} , we obtain

$$
\frac{f^{-1}(a+h) - f^{-1}(a)}{h} = \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f(x) - f(x_0)},
$$

$$
\lim_{h \to 0} \frac{f^{-1}(a+h) - f^{-1}(a)}{h} = \frac{1}{\lim_{h \to 0} f(x) - f(x_0)} = \frac{1}{f'(f^{-1}(a))}.
$$

Homework: page 105, #4, 5 In Class: #1, 2, 3