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CHAPTER 4 
 
4.1 – Derivative: A given function f is differentiable at the point a provided  
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exists.  If so, then fN(a) is called the derivative of f(x) at x=a.  Notice that h→0 is equivalent to x→a and so the 
definition formula can be rewritten (using h = x - a) as 
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Further if we set 
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then .  Hence, if F(x) is continuous at x=a, then fN(a) = F(a). )(lim)( xFaf
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4.2 – Theorem:  f differentiable ] › continuous F such that f(x) = F(x)(x-a) + f(a) and fN(a) = F(a) 

Pf:  If f is differentiable, then fN(a) exists.  So, define F(x) using (2) if x≠a and F(a) = fN(a).  The result 
follows. 
Conversely, if F exists, then take the limit as x approaches a to get the alternate form of the deriviative. 

 
4.3 – Alternate Characterization of Differentiability: f differentiable ] ›  T(x) = mx such that 
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Pf:  If f is differentiable, set T(x) =  fN(a) x. 
If (4) holds for some T(x) = mx, then - aiming toward (1) - we have  
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Hence, the limit exists and we get m = fN(a). 
 
4.4 – Differentiability implies Continuity:  f differentiable Y f continuous 

Pf:  Assume f is differentiable.  Then, using (2) yields  
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Since F(x) is continuous, then applying the limit theorems yields the result. 
 
4.6 – Differentiability on Intervals and Continuously Differentiable 
 
Homework:  page 90 #4, 6, 8 
In Class:  1, 3, 5 
 
4.10 – Rules for Derivatives 
 
 
 



4.11 – Chain Rule:  f and g differentiable implies gBf is differentiable 
Pf:  By Theorem 4.2, consider F(x) and G(x) given by 

f(x) = F(x)( x-a ) + f(a) 
g(y) = G(y)( y-f(a) ) + g( f(a) ) 

Setting y = f(x) and h(x) = g( f(x) ) yields  
g(f(x)) = G(f(x))( f(x)-f(a) ) + g( f(a) ) 

or 
h(x) = G(f(x))( F(x)( x-a ) + f(a) -f(a) ) + h(a)  

or 
h(x) = G(f(x))F(x) ( x-a )  + h(a) 

Set H(x) = G(f(x))F(x).  Since f, F and G are continuous, then so is H and we have 
h(x) = H(x) ( x-a )  + h(a) 

Thus, by Theorem 4.2, h(x) is differentiable and hN(a) = H(a).  This gives  
(gBf)N(a) = G(f(a)) F(a) = gN(f(a)) fN(a). 

 
Homework:  page 93, #2, 4, 5 
In Class:  #1, 7, 8 
 
4.12 – Rolle’s Theorem:  Suppose a≠b , f differentiable on (a,b) and continuous on [a,b].   
Then, f(a) = f(b) Y › c0(a,b) h fN(c) = 0. 

Pf:  By the extreme value theorem, there exist M and m so that m < f(x) < M.   
If m = M, then fN(x) = 0 always. 
If not, then f(x) is not constant on [a,b] and so there is a c0(a,b) where either f(c) = m or f(c) = M. 
Wolog, assume f(c) = m.  Then, f(c+h) – f(c) > 0, for all h such that c+h0(a,b). 
However, for c+h < c, the left-hand derivative yields fN(c) < 0 and for c+h > c, the right-hand derivative 
yields fN(c) > 0.  Therefore, fN(c) = 0. 

 
4.15 – Mean Value Theorem:  Suppose a≠b , f and g differentiable on (a,b) and continuous on [a,b]. 
Then › c0(a,b) h  

fN(c)( g(b) - g(a) ) = gN(c)( f(b) - f(a)). 
In particular, if g(x) = x, then  

fN(c)( b - a ) =  f(b) - f(a). 
Pf:  Consider h(x) = f(x) ( g(b) – g(a) ) – g(x) ( f(b) – f(a) ). 
Notice h(a) = h(b) and hN(x) = fN(x) ( g(b) – g(a) ) – gN(x) ( f(b) – f(a) ). 
Hence, by Rolle’s Theorem, › c0(a,b) h hN(c) = 0 which yields the result. 

 
4.17 – Bernoulli’s Inequality:  Suppose ">0, * > -1.  Then, 

0 < " < 1 Y (1+*)" < 1 + "* 
1 < " Y (1+*)" > 1 + "* 

Pf:  Consider 1 < " and f(x) = x".  Apply the MVT to f(x) on the interval from 1 to 1+* yields c such that  
" c"-1 ( 1+* - 1) = f(1+*) – f(*) 

or 
f(*) + " c"-1 *  = f(1+*) 

* > 0 implies c > 1 and "-1 > 0 yields c"-1 > 1. Thus  " c"-1 * > " * or * c"-1 > * 
* < 0 implies c < 1 and "-1 > 0 yields c"-1 < 1. Thus  " c"-1 * < " * or * c"-1 > * 
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Pf:  Uses Generalized Mean Value Theorem 
 



Homework:  page 100, #1, 4, 6, 10 
In Class:  #2, 5 
 
4.24 – Monotonicity and Derivatives:  Suppose f continuous on [a,b] and differentiable on (a,b).  Then: 

• fN(x) > 0 for all x0(a,b) Y f(x) is strictly increasing for all x0(a,b) 
• fN(x) < 0 for all x0(a,b) Y f(x) is strictly decreasing for all x0(a,b) 
• fN(x) = 0 for all x0(a,b) Y f(x) is constant for all x0(a,b) 
Pf:  Suppose a < x < w < b.  The MVT applied to the interval (x,w) yields c0(x,w) such that 

f(w) – f(x) = fN(c)(w – x). 
fN(c) > 0 Y f(w) > f(x) Y strictly increasing 
fN(c) < 0 Y f(w) < f(x) Y strictly decreasing 
fN(c) = 0 Y f(w) = f(a), using x = a Y contantly equal to f(a) on the entire interval 

 
4.25 – Families of Functions with Common Derivatives:  Suppose f and g are continuous on [a,b] and 
differentiable on (a,b) such that fN(x) = gN(x) for all x0(a,b).  Then, f(x) = g(x) + C. 

Pf:  Let h(x) = f(x) – g(x).  Then, hN(x) = 0 for all x0(a,b).  Apply 4.24 to obtain h(x) = C. 
 
4.26 – 1-1 and monotonicity:  f 1-1 and continuous implies f is strictly monotone. 

Pf:  Suppose f is a 1-1 function and continuous on some non-degenerate interval where a < b.  
The one-to-oneness of f implies f(a) < f(b) or f(a) > f(b). 
WOLOG, assume f(a) < f(b). 
For any point c such that a < c < b, if f is NOT strictly monotone, then either  
f(c) < f(a) < f(b) or  
f(a) < f(b) < f(c). 
In the first case, applying the IVT yields a w0(c,b) with f(w) = f(a) which contradicts 1-1. 
In the second case, applying the IVT yields a w0(a,c) with f(w) = f(b) which contradicts 1.1. 
Therefore, f is strictly monotone. 

 
4.26.1 – 1-1 and the monotonicity of inverses:  f 1-1 and continuous implies f -1 is also continuous and strictly 
monotone. 
 
4.27 – Inverse Function Theorem:  Suppose f is 1-1 and continuous on an open interval I.   
If a0f(I) and fN(f -1(a)) exists and is nonzero, then f -1 is differentiable and 
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Pf:  Theorem 4.26 implies f is strictly monotone and f -1 exists and is strictly monotone.   
WOLOG assume f and f -1 are strictly decreasing. 
Since I is open, then f -1(a)0(c,d) f I. 
Since f is strictly decreasing, f(d) < f(f -1(a)) < f(c) and for small h, f(d) < a + h < f(c). 
Therefore, d < f -1(a+h) < c and so f -1(a+h) exists. 
Thus, if x = f -1(a+h) and x0 = f -1(a) 

f(x) – f(x0) = f( f -1(a+h) ) – f( f -1(a) ) = a + h – a = h 
Using the continuity of f -1, we obtain 
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Homework:  page 105, #4, 5 
In Class:  #1, 2, 3 
 
 
 
 
 
 
 


