Advanced Calculus Notes Dr. John Travis Mississippi College

Based upon "An Introduction to Analysis", Wade, 3rd edition

CHAPTER 3

3.1 – Limit

3.4 – Equivalent Limits

3.6 - Sequential Characterization of Limits: f(x)→L for x→a ⇔ f(x_n)→L ∀ {x_n}→a as n→∞. Pf: Assume f(x)→L and let {x_n} be any sequence that converges to a and let ε > 0. By definition, there is a δ > 0 where 0 < | x - a | < δ implies | f(x) - L | < ε. Also, by the definition of convergence for sequences, {x_n}→a implies that for ε₁ = δ > 0, eventually | x_n - a | < δ.

For these $\{x_n\}$, $|f(x_n) - L| \le \epsilon$.

Conversely, assume $f(x_n) \rightarrow L \forall \{x_n\} \rightarrow a \text{ as } n \rightarrow \infty$. By contradiction, assume there is some $\varepsilon_1 > 0$ where the definition of limit does not hold. Therefore, there is an x such that $0 < |x - a| < \delta$ but $|f(x) - L| > \varepsilon_1$. Using this ε_1 , progressively, for various $\delta_n = 1/n$, pick an x_n where $|x_n - a| < 1/n$ but $|f(x_n) - L| > \varepsilon_1$. Then, $\{x_n\} \rightarrow a$ and the hypothesis implies $f(x_n) \rightarrow L$, which is a contradiction.

3.8 – Combination of limits

3.9 – Squeeze Theorem

HOMEWORK: pg 62 #3, 7, 9 In Class: #1, 2, 8

Graduate Assignment:

- Read Section 9.1 generalizing sequential limits to \Re^n .
- Work and turn in Problems #2, 3, 5 and 8 on page 262.
- Read Section 9.2 generalizing functional limits to f: $\Re^n \to \Re$
- Work and turn in Problems #2, 3 and 4 on page 270

3.12 – Left Hand and Right Hand Limits

3.14 – Limits and One-sided Limits Theorem: f(x)→L for x→a ⇔ L is both the left-hand and right-hand limit Pf: If the limit exists, then easily the conditions for left-hand and right-hand limits are both met. Conversely, for any ε>0, there exist δ₁ and δ₂ such that the left-hand and right-hand limits exist. Choosing δ = min{δ₁, δ₂} makes the limit work.

Limits at infinity and limits of infinity - page 67

HOMEWORK: pg 68 #2, 4, 6

3.19 – Continuity

- **3.20 Formula for Continuity**: f is continuous $\Leftrightarrow f(x) \rightarrow f(a)$ as $x \rightarrow a$.
- **3.21 Continuity and Sequential Continuity**: f is continuous at $a \Leftrightarrow f(x_n) \rightarrow f(a)$ for all $x_n \rightarrow a$.

3.22 – Combinations of Continuous Functions are Continuous

3.24 – Continuity of Compositions: If f has a limit L at a and if g is continuous at L, then $\lim_{x \to a} g(f(x)) = g(\lim_{x \to a} f(x)).$

Pf: Let ε>0.

Appealing to the sequential characterization of limits Theorem 3.17, consider the sequence $\{x_n\} \rightarrow a$. Since f has a limit L, then $y_n = f(x_n) \rightarrow L$ and so there is some N such that $n \ge N$ implies $|f(x_n) - L| < \delta$, or $|y_n - L| < \delta$.

Since g is continuous at L, there is a $\delta > 0$ such that $0 < |y_n - L| < \delta$ implies $|g(y_n) - g(L)| < \epsilon$ Hence, $|g(f(x_n)) - g(L)| < \epsilon$, as desired.

3.26 – Extreme Value Theorem: If f is continuous on a closed and bounded interval, then f is bounded. Further, if so, there exist points x_1 and x_2 such that $f(x_1) = \inf f(x) = m$ and $f(x_2) = \sup f(x) = M$.

Pf: If f is not bounded, then there exists a sequence $\{x_n\}$ such that $|f(x_n)| > n$, for all n.

However, the sequence $\{x_n\}$ must be in the bounded interval.

The Bolzano-Weierstrass Theorem implies that $\{x_n\}$ has a convergent subsequence...call it x_{nk} ...which converges to some value a.

Since the interval is closed, there exists endpoints c and d such that $c \le x_{nk} \le d$.

The Comparison Theorem implies that a also lies in the interval.

Since f is defined on the interval, then f(a) is a finite real number.

On the other hand, $|f(x_{nk})| > x_{nk}$, and so again by the Comparison Theorem, $f(x_{nk}) \rightarrow \infty = f(a)$, a contradiction.

Therefore, f is bounded and so m and M are finite numbers.

Now, by contradiction, suppose f(x) < M for all x in the interval. Then, g(x) = 1 / (M - f(x)) is continuous on the closed interval and so (by above) g(x) is bounded. Hence, there is a C>0 such that $g(x) \le C$, or $f(x) \le M - 1/C$. Taking the sup over all x in the interval yields $M \le M - 1/C$, which is a contradiction. Similarly, we can show the result for the inf.

3.28 – Sign Preserving Property: f continuous at a and f(a) > 0 implies there exist $\varepsilon > 0$ and $\delta > 0$ such that $|x-a| < \delta$ implies $f(x) > \varepsilon$.

Pf: f continuous implies for $\varepsilon = f(a)/2 > 0$, there is a δ such that $|x-a| < \delta$ implies $|f(x) - f(a)| < \varepsilon = f(a)/2$.

Solve...

3.29 – Intermediate Value Theorem: Suppose $f:[a,b] \rightarrow \mathbb{R}$ is continuous. For any K between f(a) and f(b), there is a c between a and b such that f(c) = K.

Pf:

Wolog, assume f(a) < K < f(b).

Extend f to have domain \mathbb{R} by setting f(x) = f(a) for x < a and f(x) = f(b) for x > b.

Consider $E = \{ x : a \le x \le b \text{ and } f(x) \le K \}$. Note $a \in E$ and so E is nonempty and bounded. By the Completeness Axiom, set $c = \sup E$. Theorem 2.11 implies there is a sequence $\{x_n\}$ in E such that $\{x_n\} \rightarrow c$ Since $a \le x_n \le b$, then $a \le c \le b$. By the continuity of f, $f(c) = \lim f(x_n) \le K$. If $f(c) \le K$, then K - f(x) is continuous with K - f(c) > 0By the Sign Preserving Property 3.28, there exist $\epsilon > 0$ and $\delta > 0$ such that $K - f(x) > \epsilon > 0$ for $| x - c | \le \delta$. This implies $f(x) \le K - \epsilon$, contradicting $c = \sup E$. Since K is neither f(a) nor f(b), then c cannot be either a or b and so $a \le c \le b$, as desired.

HOMEWORK: pg 78 #3, 4, 9

In Class: #1, 2, 6

3.35 – Uniform Continuity

3.38 – Cauchy and Uniform Continuity: If f is uniformly continuous, then $\{x_n\}$ Cauchy implies $f(x_n)$ is Cauchy.

Pf: $\{x_n\}$ Cauchy implies $|x_n - x_m| < \delta$ implies $|f(x_n) - f(x_m)| < \epsilon$.

3.39 – Closed and Bounded Continuity is Uniform: f continuous on a closed and bounded interval implies f is uniformly continuous on that interval.

Pf: By contradiction, suppose f is continuous but not uniformly. Then, there is an $\varepsilon_0>0$ and points x_n and y_n such that $|x_n - y_n| < 1/n$ implies $|f(x_n) - f(x_m)| > \varepsilon_0$. By the Bolzano-Weierstrass Theorem, $\{x_n\}$ has a convergent subsequence $\{x_{nk}\}$. By the Comparison Theorem, $\{x_{nk}\}$ converges to x inside the original interval. Similarly $\{y_n\}$ has a convergent subsequence $\{y_{nj}\}$ converging to y inside the original interval. So, as k, $j \rightarrow \infty$, $|f(x_{nk}) - f(y_{nj})| > \varepsilon_0$ implies $|f(x) - f(y)| \ge \varepsilon_0$. But $|x_n - y_n| < 1/n$ implies x = y which implies f(x) = f(y), a contradiction.

HOMEWORK: pg 83 #2, 5, 9

In Class: #1, 3