Advanced Calculus Notes Dr. John Travis Mississippi College

Based upon "An Introduction to Analysis", Wade, 3rd edition

CHAPTER 3

3.1 – Limit

3.4 – Equivalent Limits

3.6 – Sequential Characterization of Limits: $f(x)-L$ for $x\rightarrow a \leftrightarrow f(x_n)-L \forall \{x_n\}\rightarrow a$ as $n\rightarrow\infty$. Pf: Assume f(x) \rightarrow L and let {x_n} be any sequence that converges to a and let ϵ > 0. By definition, there is a $\delta > 0$ where $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$. Also, by the definition of convergence for sequences, $\{x_n\} \rightarrow a$ implies that for $\varepsilon_1 = \delta > 0$, eventually $|x_n - a| < \delta$.

For these $\{x_n\}$, $| f(x_n) - L | < \varepsilon$.

Conversely, assume $f(x_n) \rightarrow L \forall {x_n} \rightarrow a$ as $n \rightarrow \infty$. By contradiction, assume there is some $\varepsilon_1 > 0$ where the definition of limit does not hold. Therefore, there is an x such that $0 < |x - a| < \delta$ but $|f(x) - L| > \varepsilon_1$. Using this ε_1 , progressively, for various $\delta_n = 1/n$, pick an x_n where $|x_n - a| < 1/n$ but $|f(x_n) - L| > \varepsilon_1$. Then, $\{x_n\}$ and the hypothesis implies $f(x_n)$ – L, which is a contradiction.

3.8 – Combination of limits

3.9 – Squeeze Theorem

HOMEWORK: pg 62 #3, 7, 9 In Class: #1, 2, 8

Graduate Assignment:

- Read Section 9.1 generalizing sequential limits to \mathbb{R}^n .
- Work and turn in Problems #2, 3, 5 and 8 on page 262.
- Read Section 9.2 generalizing functional limits to f: $\mathbb{R}^n \to \mathbb{R}$
- Work and turn in Problems #2, 3 and 4 on page 270

3.12 – Left Hand and Right Hand Limits

3.14 – Limits and One-sided Limits Theorem: $f(x) - L$ for $x - a \leftrightarrow L$ is both the left-hand and right-hand limit Pf: If the limit exists, then easily the conditions for left-hand and right-hand limits are both met. Conversely, for any $\varepsilon > 0$, there exist δ_1 and δ_2 such that the left-hand and right-hand limits exist. Choosing $\delta = \min{\{\delta_1, \delta_2\}}$ makes the limit work.

Limits at infinity and limits of infinity - page 67

HOMEWORK: pg 68 #2, 4, 6

3.19 – Continuity

- **3.20 Formula for Continuity**: f is continuous \Rightarrow f(x) \rightarrow f(a) as x \rightarrow a.
- **3.21 Continuity and Sequential Continuity**: f is continuous at $a \leftrightarrow f(x_n) \rightarrow f(a)$ for all $x_n \rightarrow a$.

3.22 – Combinations of Continuous Functions are Continuous

3.24 – Continuity of Compositions: If f has a limit L at a and if g is continuous at L, then $\lim_{x\to a} g(f(x)) = g(\lim_{x\to a} f(x)).$

Pf: Let $ε > 0$.

Appealing to the sequential characterization of limits Theorem 3.17, consider the sequence $\{x_n\} \rightarrow a$. Since f has a limit L, then $y_n = f(x_n) \to L$ and so there is some N such that $n \ge N$ implies $| f(x_n) - L | < \delta$, or $|y_n - L| < \delta$.

Since g is continuous at L, there is a $\delta > 0$ such that $0 < |y_n - L| < \delta$ implies $|g(y_n) - g(L)| < \epsilon$ Hence, $| g(f(x_n)) - g(L) | < \varepsilon$, as desired.

3.26 – Extreme Value Theorem: If f is continuous on a closed and bounded interval, then f is bounded. Further, if so, there exist points x_1 and x_2 such that $f(x_1) = inf f(x) = m$ and $f(x_2) = sup f(x) = M$.

Pf: If f is not bounded, then there exists a sequence $\{x_n\}$ such that $|f(x_n)| > n$, for all n.

However, the sequence $\{x_n\}$ must be in the bounded interval.

The Bolzano-Weierstrass Theorem implies that $\{x_n\}$ has a convergent subsequence...call it x_{nk} ...which converges to some value a.

Since the interval is closed, there exists endpoints c and d such that $c < x_{nk} < d$.

The Comparison Theorem implies that a also lies in the interval.

Since f is defined on the interval, then f(a) is a finite real number.

On the other hand, $| f(x_{nk}) | > x_{nk}$, and so again by the Comparison Theorem, $f(x_{nk}) \rightarrow \infty = f(a)$, a contradiction.

Therefore, f is bounded and so m and M are finite numbers.

Now, by contradiction, suppose $f(x) < M$ for all x in the interval. Then, $g(x) = 1/(M - f(x))$ is continuous on the closed interval and so (by above) $g(x)$ is bounded. Hence, there is a C>0 such that $g(x) < C$, or $f(x) < M - 1/C$. Taking the sup over all x in the interval yields $M \le M - 1/C$, which is a contradiction. Similarly, we can show the result for the inf.

3.28 – Sign Preserving Property: f continuous at a and $f(a) > 0$ implies there exist $\varepsilon > 0$ and $\delta > 0$ such that $|x-a| \leq \delta$ implies $f(x) > \varepsilon$.

Pf: f continuous implies for $\varepsilon = f(a)/2 > 0$, there is a δ such that $|x-a| < \delta$ implies $| f(x) - f(a) | < \varepsilon = f(a)/2.$

Solve...

3.29 – Intermediate Value Theorem: Suppose f:[a,b]→ℝ is continuous. For any K between f(a) and f(b), there is a c between a and b such that $f(c) = K$.

Pf:

Wolog, assume $f(a) < K < f(b)$.

Extend f to have domain ℝ by setting $f(x) = f(a)$ for $x < a$ and $f(x) = f(b)$ for $x > b$.

Consider $E = \{ x : a \le x \le b \text{ and } f(x) \le K \}$. Note a ϵE and so E is nonempty and bounded. By the Completeness Axiom, set $c = \sup E$. Theorem 2.11 implies there is a sequence $\{x_n\}$ in E such that $\{x_n\} \rightarrow c$ Since $a \le x_n \le b$, then $a \le c \le b$. By the continuity of f, $f(c) = \lim f(x_n) < K$. If $f(c) < K$, then $K - f(x)$ is continuous with $K - f(c) > 0$ By the Sign Preserving Property 3.28, there exist $\varepsilon > 0$ and $\delta > 0$ such that K - f(x) > ε > 0 for $|x - c| < \delta$. This implies $f(x) < K - \varepsilon$, contradicting $c = \sup E$. Since K is neither f(a) nor f(b), then c cannot be either a or b and so $a < c < b$, as desired.

HOMEWORK: pg 78 #3, 4, 9

In Class: #1, 2, 6

3.35 – Uniform Continuity

3.38 – **Cauchy and Uniform Continuity**: If f is uniformly continuous, then $\{x_n\}$ Cauchy implies $f(x_n)$ is Cauchy.

Pf: $\{x_n\}$ Cauchy implies $|x_n - x_m| < \delta$ implies $|f(x_n) - f(x_m)| < \epsilon$.

3.39 – Closed and Bounded Continuity is Uniform: f continuous on a closed and bounded interval implies f is uniformly continuous on that interval.

Pf: By contradiction, suppose f is continuous but not uniformly. Then, there is an $\varepsilon_0 > 0$ and points x_n and y_n such that $|x_n - y_n| < 1/n$ implies $|f(x_n) - f(x_m)| > \varepsilon_0$. By the Bolzano-Weierstrass Theorem, $\{x_n\}$ has a convergent subsequence $\{x_{nk}\}$. By the Comparison Theorem, $\{x_{nk}\}\$ converges to x inside the original interval. Similarly $\{y_n\}$ has a convergent subsequence $\{y_{ni}\}\$ converging to y inside the original interval. So, as k, $j \rightarrow \infty$, $| f(x_{nk}) - f(y_{ni}) | > \varepsilon_0$ implies $| f(x) - f(y) | > \varepsilon_0$. But $|x_n - y_n|$ < 1/n implies $x = y$ which implies $f(x) = f(y)$, a contradiction.

HOMEWORK: pg 83 #2, 5, 9

In Class: #1, 3