ONE INTRODUCTION TO MATHEMATICAL RESEARCH

BRUCE REZNICK

1. OVERLY GENERAL INTRODUCTION

Few prospects are as daunting for a serious undergraduate math major as that of
doing research. Not to worry. Mathematical research is simply a natural extension of
the sort of homework you’ve already been doing. I have been teaching an undergrad-
uate honors seminar at UIUC called “Introduction to mathematical research”. This
article includes some propaganda I’ve been putting forth in that seminar. I want to
thank all my students for their suggestions and feedback. I also want to thank Art
Benjamin, Dan Grayson, Abbey Rechner and Robin Sahner for their comments.

As you might imagine, mathematical research is harder than homework. You can’t
look for the answers to the chapter in the back of the book; you don’t know which
chapter, and you often don’t even know which book, and it wouldn’t be there anyway.
You're not even sure what would constitute an acceptable answer.

But in some ways, mathematical research is easier than homework. The time limit
is flexible, and since you have chosen the question yourself, you are more likely to
find it interesting. And, if you invent your own problem, but solve a different one,
you can always say that it was what you were trying to do in the first place!

To be sure, the best mathematical research is motivated by attempting a more
profound understanding than is usually found in a single homework assignment. The
best research involves deep new ideas and you won’t find the secret in a Math Horizons
article. Nevertheless, there are a few tips that will put you in a more favorable position
to start your research career.

The most important thing you need to do is to adopt an active attitude towards
the mathematics you learn. When you see something new, don’t ask “Will this be
on the test?”, ask “How can I make this work for me?” Be bold. To paraphrase the
60’s revolutionary Franz Fanon: “Knowledge cannot be given, it must be taken.”

Learn as much mathematics as you can, in as many different areas as you can,
including areas in which mathematics might be applied. Take hard classes. Go to
as many mathematical lectures as you can, even if you won’t understand it all. Big
secret revealed: most professors go to lectures and don’t understand it all. Go on the
Web and read articles, download lectures, etc.

Find your comfort zone, but be prepared to leave it. Know yourself and work
to your strengths, while not neglecting your weaknesses. You may prefer problem-
solving or theorem-building, the discrete or the continuous, the pure or the applied,
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the abstract or the concrete, the combinatorial or the holistic, the static or the
dynamic, the finite or the infinite, the intuitive or the formal, pictures or equations.
You may prefer equalities in your algebraic objects or isomorphisms; you may prefer
coordinates in your geometric objects, you may prefer the intrinsic. You may be
outer-directed or inner-directed. You may be a hedgehog or you may be a fox. (“The
fox knows many things, but the hedgehog knows one big thing.” — Archilochus)
There’s no “right” preference in all of these, and you will be a better mathematician
if you can deal with both sides if you have to.

In my experience, research consists of question-asking, problem-solving, knowledge-
finding and checking, checking, checking. There are many excellent books on problem-
solving; start with How to Solve It by George Pélya. Knowledge-finding is extremely
dependent on your location — always get to know your librarians. Asking big questions
requires inspiration. The rest of this article is devoted to the tabletop craft of asking
little questions.

If you’ve read this article this far, you’re probably thinking to yourself “OK, Pro-
fessor I've-never-heard-of-you-but-you-must-be-on-the-A-list, nice fancy words, but
how can you help me?” Arthur C. Clarke wrote that any smoothly running advanced
technology is indistinguishable from magic. Great mathematics is magical. You can’t
learn how to make a metaphorical elephant disappear in plain view by reading about
it. Don’t be scared off by thinking that you don’t know enough mathematics to
do research — nobody ever knows enough mathematics. But you can always seem
brilliant if you take an idea or a technique in one area and apply it elsewhere.

When I teach my seminar, I start with a single exercise. Repeat as often as desired.

e Present your favorite theorem and proof or problem and solution.

e Change your favorite in some way, and prove or solve it again.

e Change your favorite in another way, so that you no longer know how to prove
or solve it.

2. YOU PROVED A THEOREM, NOW WHAT?

Okay, so let’s say things have gone well and you think you’ve proved something.
The first thing to do is to enjoy the moment, whether or not you’re right. After
a decent interval, the next thing to do is to put away your notes and try to prove
it again from scratch. (My undergraduate proof of Fermat’s Last Theorem was fun
while it lasted.) Make sure you understand all the definitions: it’s very embarrassing
to discover that you haven’t proved what you thought you proved. (Turns out I got
the Binomial Theorem wrong.) If you find yourself wanting to skip a portion of the
argument as you check your work, be very careful: this is where mistakes usually
hide.

Suppose everything is OK. Congratulations, you’ve proved a theorem! What you
want to do now is see how you can water it and make it grow. Magic can be making
the elephant disappear. That requires elaborate equipment and the work of dozens
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of technicians. But there’s also magic done at a table with no equipment but a deck
of cards, dextrous fingers and a few good ideas.

Return to your theorem. Try to push the conclusions. Have you made full use
of your argument? Try to pull the hypotheses. Do you need every assumption?
Does your argument apply to a more general class of object? Have you proved
more than you thought? Isolate the mechanism that makes your proof work. Is it
familiar? Are you really proving something else and applying it to your case? If so,
maybe that’s what you should study next. Most mathematicians like saying “every
X satisfies condition A or condition B,” so you should make as many “if and only if”
propositions as possible. Does the converse of your theorem hold? What if you play
with the hypotheses?

A theorem usually isn’t very interesting unless it has some applications. Work out
the details in at least one specific case. If you find that your theorem doesn’t answer
all the questions in this case, you know your next project.

A theorem has a natural rhythm. Does your proof remind you in any way of another
proof you know, possibly in a different area? Can you show that two apparently
different results are special instances of a more general theorem? (This is the concrete
approach to abstraction.)

It always helps to try to explain your work to other people. (This might be one of
the most important tips here.) Not only are listeners likely to have useful suggestions,
but the process of preparing an explanation is extremely valuable in clarifying your
own thoughts. You may even find a collaborator. (Most mathematicians these days
work on joint projects.) Imagine giving a presentation of your result to a roomful
of your classmates and teachers. It’s possible that one of them asks questions in a
characteristic manner. Visualize this and see if you can answer the question in your
mind.

Consider the Seinfeld Principle. Take whatever you are doing and do the opposite.
Switch the foreground and the background. For example, instead of finding the
roots of a polynomial based on its coefficients (very hard), try to find the coefficients
of a polynomial based on its roots (the door to symmetric polynomials). Perform
even more elaborate permutations on the roles of these objects. There’s also the
Oprah Principle. Visualize a solution to your problem. What other properties would
your solution have? This often makes the original problem easier. Finally, try the
Postmodern or Mad Magazine Principle. Everything is in play. Change, one by one,
each of your hypotheses and assumptions and see what you can prove. (If you change
the rules of implication itself, you are a mathematical logician!)

Check for the presence or absence of certain familiar characteristics. For example:
look for linearity in your problem. If your problem isn’t linear, measure the deviation
from linearity. The same thing applies to symmetry and commutativity. You can
generalize by turning every number that appears in your problem into a parameter.
(Remember that 0 and 1 are numbers.) Contrariwise, if some restriction on the
parameters leads to an interesting outcome, see what happens if you enforce this
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as a hypothesis. A productive technique is to generalize in one direction and then
specialize in another one.

Finally, some bad news. These techniques won’t work all the time. Some of the new
directions will be boring. You’ll ask questions for which you can’t find an interesting
answer. You’ll find problems that consume your interest for weeks at a time, and
either not solve them, or be unable to persuade anyone else to care. Mathematical
research journals are filled with hard-won and completely forgotten theorems. It’s
very hard in advance to predict other people’s reaction to your work. One good
reason for answering someone else’s question is that it guarantees you a non-empty
audience. Finally, don’t throw out your old notes. There are a couple of questions
I’ve been thinking about for almost 30 years. It’s not plagiarism to steal from your
old unpublished work.

3. THE INEVITABLE FIBONACCI EXAMPLE

Let me illustrate the techniques of the last section with an example taken from
Fibonacci numbers. (Caveat: Fibonacci numbers are the E. coli of the problem-
solving literature. They are not particularly important, but they are easily studied
because many of their properties are very close to the surface.)

Recall that the sequence {F,}, n > 0, is defined by:

=0, F =1, F,=F,_1+F, 9 n>2.
One familiar property satisfied by the Fibonacci sequence is the addition formula:
(1) Frinii = FiFoor + B Fy, for integers m,n > 0.
If you saw (1) as a homework problem, you probably already know the proof.

Proof. Fix m and consider the sequence {z,}, defined by z, := F,iny1. Then
{x,} satisfies the Fibonacci recurrence x, = x,_1 + Tn_o. So does {y,}, defined by
Yn = Frp1Fhyo1 + FF,. You show that xp = yg and x; = y; and then use the
recurrence to prove (1) by induction. O

The underlying mechanism of this proof is that the vector space V' of sequences
{a,} that satisfy the Fibonacci recurrence is two-dimensional. In fact, if you write
out the terms of the sequence with ay = r and a; = s:

(ao, a1, G0, a3, a4, a5, ...) = (1,8, 7 + 8,7+ 28,2r + 3s,3r + 5s,...)

you can see that the general element of V' can be immediately written as a linear
combination of the two sequences

(1,0,1,1,2,3,---) and (0,1,1,2,3,5,---),

which thereby form a basis of V. The first sequence in the basis is {F,41 — F,,} (we
can’t say F),_; because we haven’t defined F'_;, yet; the second sequence in the basis
is {F,,}. Thus, any sequence {a,} in V has the general form

an = ag(Fry1 — Fp) + a1 Fy = apFpq + (a1 — ag) Fry.
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Taking a,, = Fi,4m+1, we see that (1) follows almost immediately.
Another thing to observe is that, if A2 = X\ + 1, then the sequence {\"} will lie in

V. Thus, another basis for V is {{¢"}, {¢"}}, where ¢ = 15 and ¢ = =5 By

2 2
representing {F,,} in terms of this basis, we get the familiar closed form

1 _
- ¢n _ ¢n .
SHGEED
(Plugging this into (1) gives a formal identity that holds for all m,n.)
The underlying proof mechanism immediately suggests that the vector space of
sequences {a,} that satisfy any constant-coefficient linear recurrence

Fy

(p = C1Qp—1 + - -+ CrOp—p, nzr

will be at most r-dimensional, and a, for n > r can be expressed in a fixed way in
terms of the initial conditions ag,ay,...,a, 1. Any shifted sequence a,,., for fixed
m will also be in this vector space, and so can be expressed as a linear combination
of the basis. Thus, addition formulas are inevitable, and there’s nothing so amazing
about (1).

Here are ten additional small-step directions you take in playing with (1).

1. Generalize (1) and find “symmetric” formulas for F,,, 1m,+ms, €tc.

2. Specialize (1) to find formulas for Fy, and Fy, ;.

3. Combine 1. and 2. to find formulas for Fj,, and more generally, Fj,. One of
the most common uses for (1) is as a lemma in proving that Fy, is always a multiple
of F,, for k,n € N.

4. Determine the addition formula for your favorite recurrence sequence with your
favorite initial conditions.

5. Prove (1) using generating functions. That is, define

®(z,y) = Z Z Froinpa™y",

m=0 n=0

and explore the properties of ®, with the goal of expressing it as a rational function
of z and y. It will be helpful to recall that

> t

n __
ZF"t 1 —t—t2
n=0

from which the closed form can also be derived.
6. Seinfeld: find all sequences {a,} that satisfy (1). (Hint: start with putting
m = 0,1 into (1), so that

Op+1 = G10np41 + GoQn; Op+2 = G20p4+1 T G10y.

The first equation should be studied under the conditions: (ag,a;) = (0,1) and
(ap,a1) # (0,1). The second equation says that {a, } satisfies a second-order constant
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coefficient recurrence. You can also use this to guess that a, = aA™ 4+ Su™, and use
(1) to get conditions on «, 3, A, 1, which in turn will help nail down the recurrence.

7. Determine the set of coefficients (c1, ¢o, ¢3,¢4) With the property that there is a
sequence {a,} satisfying

Omtn+1 = C1Om4+10p+41 T C20m110n + C3Am0n11 + C40pmAnp.

Note: there is a trivial answer: if a,, = 0 for all n, then any such formula is true, so
let’s exclude that. Once you’ve done that, observe that the left-hand side is symmetric
upon permuting m and n, but the right-hand side usually isn’t.

8. We noted earlier that F_; is undefined; but any “reasonable” definition would
have F' 1 + Fy = Fi, so F.; = 1. In this way, you can generalize the Fibonacci
sequence to F,,, n € Z, find a nice pattern and compare it with the closed form. You
can also generalize the Fibonacci sequence to Fi, t € R, by defining an arbitrary
function F; = ¢(¢) on [0,2) and then using the recurrence g(t) = g(t — 1) + g(t — 2)
to extend it to R. Can you do this in an “interesting way”? (I can’t.) You can even
define a Fibonacci function on C by combining the recurrence with a function on the
strip {z : Re(z) € [0,2)}.

9. One reason that you can’t easily define F}; is that $ <0, s0 $'/? in the closed
form would not be real. More generally, show that there is no sequence a, of real
numbers, where 2n € Z so that a;,1n11 = Gme10py1 + nay,. (Hints: mix up integers
and half-integers; a sum of real squares can’t be negative.)

10. When you hear “addition formula”, you probably think of the formulas

cos(t 4+ u) = cost cosu — sin ¢ sin u; sin(t 4+ u) = sint cos u + cos ¢ sin u.

Use the mechanism of the first proof to derive these, using as your two-dimensional
vector space the solutions to the differential equation y” + y = 0. Now generalize to
other second-order differential equations.

Exercise. @ Rewrite this section using your favorite theorem or problem.

4. FINAL WORD

Human creativity is inevitably personal, and different techniques work well for
different practitioners. I hope this article may prove of some value to its student
readers as they start their research. I also hope it will irritate my research colleagues
so much that they feel obligated to write their own articles about their own styles
and techniques.
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