
Dr. John Travis, Mississippi College - Notes on Differential Operators

Defn:  An nth order linear DE has the form

(L) an(t)y
(n) + an-1(t)y

(n-1) + ... + a1(t)y
N + a0(t)y = g(t),

where the functions ak(t) and g(t) are continuous functions on some interval (a,b).  
We call g(t) the forcing term.

If g(t) = 0, then the DE is called homogeneous (LH); else non-homogeneous (LN). 

If n = 1, then (L) is know as First Order Linear and can be solved using an integrating factor.

If ak(t) = ak = constant for all k, the DE has constant coefficients and is denoted (LHC).

Remark:  For a DE to be linear, the following must be noted:
(1)  All the unknown function terms are raised only to the first power.
(2)  There are no cross terms involving the unknown function or its derivatives.

Remark:  We will assume that an(t) is nonzero for all t values in a given interval (a,b).  Hence,
the DE is always nth order throughout (a,b).

Application:  Pendulums
Let a mass m be suspended by a (nonflexible) rod of length r.  Let 2 be the angle the rod is from
vertical and let x = r 2 be the arc length from vertical.  Once 2 is known, the precise location of
the mass is also known.

The amplitude is the maximum 2 and the period is the time required for the
pendulum to go through a complete cycle.  

Gravity will not affect any motion of the pendulum in the middle (at equilibrium)
but will affect it otherwise.  For our purposes, we consider the motion of the mass
in the direction of its tangent with gravitational force component -mg sin(2) where
the negative sign indicates a restoring force always directed toward the
equilibrium.

- Assume the rod is massless and the mass m to be concentrated at one point.  Neglect buoyancy,
friction in the hinge and fluid resistance (ie. the pendulum is in a vacuum).  With these
assumptions,  m x'' = ma = F = -mg sin(2), or   
x'' + g sin(2) = 0.

But, arc length x = r 2 implies x'' = r 2'' which yields the nonlinear model  r 2'' + g sin(2) = 0. 
We can "linearize" this by using the Maclaurin expansion of sin(2) = 2 - 23/3! + ...  or
approximately we replace the sin(2) term with 2 provided the mass moves through a reasonably



small angle 2.  This yields the linear approximate model r 2'' + g 2 = 0.

- Assume now that the pendulum is damped (air or fluid resistance).
This yields mx'' = -mg sin(2) - bx', or as above we obtain mr 2'' + br 2' + mg 2 = 0.

- Assume we add an external force f(t).
This yields mr 2'' + br 2' + mg 2 = f(t).

Result:  (Superposition Principle)  If (LH) has solutions y1(t) and y2(t), then c y1(t) + d y2(t) also
solves (LH).

Remark:  We would like to determine the general solution to a nth order D.E.  To do so, we
need to find the most general formula which, by a proper choice of constants only, gives any
solution of the DE.    By the superposition principle, we see that any linear combination of two
solutions yields a solution which contains both as special cases.

Defn:  The set of n functions f1(t), f2(t), ... fn(t) is linear dependent on a given interval if and only
if constants b1, b2, ..., bn exist (not all zero) such that 

b1f1(t) + b2f2(t) + ... bnfn(t) = 0, 

for all t in the interval.  If no such constants exist, the functions are linearly independent.

Special Case:  Two functions are linearly dependent on an interval iff one is a constant multiple
of the other.

Result:  (LH) has n linearly independent solutions over (a, b) provided the coefficients are
continuous over (a, b) and an(x) is nonzero over (a, b).

Defn:  Let y1(t), ... , yn(t) be linearly independent solutions of (LH) over (a,b).  
Then, y1(t), ... , yn(t) are called a fundamental set of solutions and the general solution of (LH) is
given by 

y(t) = c1 y1(t) + ... + cn yn(t), 

where the values ck are arbitrary constants.

Solving LHC:  Assume a solution of the form y(t) = e8t, where 8 is a unknown constant. 
Substitute into (LHC) to obtain after simpification 

an8
n + an-18

n-1 + ... + a18 + a0 = 0, 



which is an algebraic equation known as the auxiliary equation.  Hence, values of 8 which make
the auxiliary equation true give solutions for (LHC) using y=e8t.

Result 1:  If r and s are distinct numbers, then the functions ert
  and est are linearly independent. 

(A similar result holds for an arbitrary number of distinct real numbers.)

Result 2: For a given value of 8, the functions e8t, te8t, t2e8t, t3e8t, ... are linearly independent.

Result 3:  (Euler's Identity)  For the pure imaginary number i$, ei$ = cos($) + i sin($) = cis($).
Pf:  Using Maclaurin, 
ei$ = 1 + (i$) + (i$)2/2! + (i$)3/3! + (i$)4/4! + (i$)5/5! + ... 

= {1 + (i$)2/2! + (i$)4/4! + ...} + {(i$) + (i$)3/3! + (i$)5/5! + ...} 
= {1 - $2/2! + $4/4! - ...} + i*{$- $3/3! + $5/5! - ...} = cos($) + i sin($).

Result 4:  e"xcos($) and e"xsin($) are linearly independent, provided $ is nonzero.

Result 5:  Complex roots to the auxiliary equation must occur in conjugate pairs of the form " +
$i and " - $i.

Defn:  A function generallycorresponds a number to a number.  
A functional corresponds a function to a number.  (Like the definite integral.)  
An operator corresponds a function to a function.  (Like the indefinite integral or the derivative.)

Defn:  Define the kth derivative operator Dk by the formula Dk{f} = f(k)(t).
Define the identity operator I by the formula I{f} = f(t).

Remark:  We can restate (L) using the differential operator Dk in the form 

L{y} = an(t)D
ny + an-1(t)D

n-1y + ... + a1(t)Dy + a0(t)Iy = g(t), 

or in the operator form 

L{y} = g(x).

Then, a solution y(t) to (L) is also a solution to the operator equation L{y} = g(t).



Special Case:  (LHC).  Then L{y} = 0 becomes 

anD
ny + an-1D

n-1y + ... + a1Dy + a0Iy = 0.

By using the linearity of the differential operator, this becomes 

(anD
n + an-1D

n-1 + ... + a1D + a0I)y = 0.

Notice, if we define the polynomial P(t) = ant
n + an-1t

n-1 + ... + a1t + a0, this becomes 

P(D)y = 0.

Results on Differential Operators:
1.  Dk[e8t] = 8ke8t.

2.  P(D)e8t = e8t P(8), by reapplying (1) on each term of P(D).  
Therefore, roots 8 of P(8) give solutions to P(D)y=0.

3.  (D-8)[e8ty] = e8tDy, by using the product rule and linearity.  
Hence, (D-8)[e8t] = e8t D[1] = 0.

4.  (D-8)k[e8t y] = e8t Dky, by recursively applying (3).

5.  (D-8)k[tre8t] = 0, for r = 0,1,...,k-1, by applying (4) with y = tr,  noting Dk tr = 0 since r < k.

6.  To solve (LHC):
Write (LHC) in the form P(D)y=0.
Factor P(t) = Q(t)(t-8)k, where Q is a polynomial of degree n-k.
(D-8)ky = 0 precisely when y = tre8t, for r=0,1,...,k-1, using (5).
So, P(D)y = Q(D)(D-8)ky = 0.  Therefore, y = tre8t are solutions for r=0,1,...,k-1.



CASES: (1)  Real, distinct roots
(2)  Real, repeated roots
(3)  Complex, distinct roots
(4)  Complex, repeated roots.

Solutions to  LHC:  Determine the roots of the auxiliary equation.
CASE 1:  Distinct real roots 81, 82, ... , 8n.  Then, the general solution is 

y(t) = c1 exp(81t) + c2 exp(82t) + ... cn exp(8nt).

CASE 2:  The roots 81, 82, ... , 8n are real numbers but some are repeated.  Then, the general
solution to the DE is given by the sum of terms of the form 

c1 exp(8t) + c2 t exp(8t)  + ... ck t
k-1 exp(8t), 

where the root 8 is repeated k times.

CASE 3:  The roots 81, 82, ... , 8n include one complex pair  " + $i and " - $i.
Then, y1 = e(" + $i)t and y2 = e(" - $i)t solve (LHC).  

By Euler's Identity, y1=e"t(cos($t) + i sin($t)) and y2 = e"t(cos($t) - i sin($t)).

By the superposition principle, both y3 = (y1 + y2)/2 and y4 = (y1 - y2)/(2i) solve (LHC).   
But, y3 = e"t cos($t) and y4 = eat sin($t).

Therefore, c1y3 + c2y4 solves (LHC) and the general solution is 
y(x) = e"t(c1cos($t) + c2sin($t)) + other terms.

CASE 4:  The roots 81, 82, ... , 8n. include a complex pair " + $i and " - $i. repeated k times.
Then, the general solution to (LHC) includes

yk(t) = e"t(c1 cos($t) + c2 sin($t)) + t e"t(c3 cos($t) + c4 sin($t)) 
+ t2 e"t(c5 cos($t) + c6 sin($t)) + ... + tk-1 e"t(c2n-1 cos($t) + c2n sin($t)).



Application:  Automobile Suspension Systems Revisited
- Now assume the mass m is the portion of the car's mass supported by one tire.  The same
equation developed earlier still holds.
- Determine the spring and shock absorber constants to give a good, smooth, safe ride.
- Model 1:  No spring or shock.  No good.
- Model 2:  Using a spring but no shock.  Oscillatory results or Simple Harmonic motion.
- Model 3:  Both spring and shock used.  Damped results.
- Model 4:  Add an external force.  Since we have not yet solved (LNC) yet, we must wait till
later

HOMEWORK: Work the following problems:
1.   yO - 3yN = 0

2.  yO - 3yN - 10y = 0

3.  y� - y = 0

4.  For differential equation yO - :yN+ T2y = 0, for fixed T, determine bifurcation values for :.

Solving the Non-homogeneous Problem

Generalized Superposition Principle: If yc(t) is the general solution of (LHC) and yp(t) is any
solution for (LNC), then the general solution for (LNC) is y(t) = yc(t) + yp(t).

Special Differential Operators
• Dk [ tj ] = 0, provided 0 < j < k.
• (D-8)k [tj e8t] = 0, provided 0 < j < k.
• (D2 + $2)k [ tj sin($t) ] = 0, provided 0 < j < k.
• (D2 + $2)k [ tj cos($t) ] = 0, provided 0 < j < k.
• (D2 - 2"D + "2 + $2)k [ tj e"t sin($t) ], provided 0 < j < k.
• (D2 - 2"D + "2 + $2)k [ tj e"t cos($t) ],  provided 0 < j < k.

To solve LNC using the method of Undetermined Coefficients:
1. Solve the associated homogeneous DE to obtain yc(t).
2. By looking at the forcing term, determine an appropriate differential operator and apply to

both sides in order to create a higher order homogeneous differential equation.
3. Solving this new homogeneous DE, take all terms not already part of yc(t) above as

candidates for yp(t) with arbitrary constants as coefficients which will be “determined”.
4. Plug yp(t) above into original DE and equate like terms.  This should yield a system of

linear equations which can be solved for these now “determined” coefficients.
5. Write the general solution to (LNC) as y(t) = yc(t) + yp(t).

Homework: Solve some problems in textbook, chapter 4, sections 1, 2 and 3.


