
 

 

MATH 352 – Chapter 3 
First Order Linear Systems  

 
DR. JOHN TRAVIS 

MISSISSIPPI COLLEGE 
 
Linear Systems of Equations with Constant Coefficients:   (SLC) 
 
Consider  
  x' = ax + by 
  y' = cx + dy 
 
This is called a homogeneous linear system of two equations with constant coefficients.   
 
Using matrix notation, we can rewrite as Y'(t) = A Y(t). 
 
The system  
  x' = ax + by + f(t) 
  y' = cx + dy + g(t) 
 
is non-homogeneous and can be written Y'(t) = A Y(t) + F(t). 
 
In general, an n-dimensional linear system of equations is of the form 
 
  y1' = a11y1 + a12y2 + ... + a1nyn
  y2' = a21y1 + a22y2 + ... + a2nyn
  y3' = a31y1 + a32y2 + ... + a3nyn
   . . . 
  yn' = an1y1 + an2y2 + ... + annyn
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the above system can be written in the matrix form  
 

Y'(t) = A Y(t) 
 
and will be denoted  (SLHC).   
 
The non-homogeneous case  
 

Y'(t) = A Y(t) + F(t), 
 
will be denoted (SLNC). 
 
Converting LHC – When given an nth order linear differential equations, one may convert to an n-dimensional first-order system by 
creating the temporary variables y1, y2, ... , yn using  

y1 = y,  
y2 = y',  
y3 = y'', 
 ...  
yn = y(n-1).   



 

 

Notice, 
y1' = y2,  
y2' = y3,  
...  
yn-1' = yn, and  
yn' = -(an-1/an) y(n-1) - ... - (a1/an) y' - (a0/an) y = -(an-1/an) yn-1 - ... - (a1/an) y2 - (a0/an) y1

 
This can be easily written in system form Y' = A Y.  Similarly, one may convert the non-homogeneous case to (LNC). 
 
Qualitative techniques discussed for systems in general still apply to linear systems and can be employed. 
 
Defn:  The determinant of a 2x2 matrix A is given by a11a22 - a12a21.  The determinant of a higher order system can be determined by 
using cofactor expansion. 
 
Theorem:  If det(A) is nonzero, then the only solution of A Y = 0 is the trivial solution.  Hence, if det(A) is nonzero, the only 
equilibrium of the linear system is the origin.  Conversely, a necessary condition for nontrivial equilibria is if det(A)=0. 
 
Defn:  If det(A)=0, then the matrix A is called singular or degenerate. 
 
Superposition Principle (Linearity Principle):  Consider the linear system Y'(t) = A Y(t).   
$ If Y(t) is a solution, then kY(t) is also a solution 
$ If Y1(t) and Y2(t) are solutions, then Y3(t) = Y1(t) + Y2(t) is also a solution. 
The superposition principle implies that if we have two different solutions of (SLHC), then a two-parameter solution also exists.  In 
general, for a n-dimensional system, we want to find a n-parameter solution involving linearly independent functions - the most 
general solution. 
 
Defn:  An eigenvalue of the matrix A is the scalar λ such that  
 

det(λI - A)=0. 
 
For a given eigenvalue, the nontrivial vector V which satisfies AV = λV is called an eigenvector.  Expanding det(λI - A) yields a 
polynomial expression in λ called  the characteristic polynomial.  Setting det(λI - A)=0 yields the characteristic equation. 
 
Suppose λ is an eigenvalue for the matrix A from (SLHC). 
Consider the vector function Y(t) = e8t K, where K is some vector.   
Then  
 

AY = Y' = λ e8t K = λY, 
 
and so we get the expression AY = λY.   Therefore, λ is an eigenvalue if and only if Y(t) = e8t K is a solution of (SLHC). 
 
 
Straight-Line Solutions - These solutions will satisfy the property that  
 

AY = λY, 
 
for some scalar λ.  Rewriting yields λY - AY = 0 or (λI - A)Y = 0, which is true only if Y=0 or det(λI - A)=0. 
 
Remark:  For straight-line solutions, positive eigenvalues correspond to solutions which travel away from the origin as time increases.  
Negative eigenvalues correspond to solutions which approach the origin as time increases. 
 
Classifying equilibria for (SLHC) with distinct, real eigenvalues: 
Saddle:  (Unstable)  A 2-dimensional linear system which includes a positive and a negative eigenvalue.  Notice, solutions will tend to 
move past the origin and then asymptotic to the straight-line solutions. 
 
Sink:  (Stable)  A 2-dimensional linear system which includes two negative eigenvalues.  Note, solutions (except for one of the 
straight-line solutions) will tend toward the origin as t increases asymptotic to the straight-line solution corresponding the larger 
eigenvalue.  Indeed, consider dy/dx = (dy/dt)/(dx/dt)... 
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Source:  (Unstable)  A 2-dimensional linear system which includes two positive eigenvalues.  Note, solutions (except for one of the 
straight-line solutions) will tend toward the origin as t decreases asymptotic to the straight-line solution corresponding the smaller 
eigenvalue. 
 
Application to the Harmonic Oscillator 
 
Complex Eigenvalues:  By the previous work, if λ is an eigenvalue with eigenvector V, Y(t) = e8t V  is still a solution.  However,  if  
λ = a+bi, then by using Euler's formula  
 

eib = cos(b) + i sin(b) 
 
and so we can obtain the solution  
 

Y(t) = eat{cos(bt) + i sin(bt)}Yλ = Yre(t) + i Yim(t). 
 
Result:  For (SLHC) with a complex eigenvalue pair,  Yre(t) and Yim(t) are real and linearly independent solutions.  (Indeed, plug in 
and equate real parts and imaginary parts.) 
 
Classifying equilibria for (SLHC) with distinct, complex eigenvalues:  Consider the eigenvalue λ = a + b i. 
Spiral Sink:  If a < 0. 
 
Spiral Source: If a>0 
 
Center:  If a=0 
 
Natural Period:  2π/b 
 
Natural Frequency: b/2π 
 
Zero Eigenvalues: Arise from degenerate systems.  Suppose λ=0 is an eigenvalue with eigenvector K.  Then,  
 

Y1(t) = c1 e8t K = c1 K 
 
is a constant solution, all of which are equilibrium points.  Hence, solutions will tend to be attracted or repelled from this line of 
equilibrium points dependent upon whether the other eigenvalue is positive or negative. 
 
Consider the function  
 

Y2(t) = t e8t K + e8t V, 
 
where V is some other vector.  Plugging this into the differential equation yields the requirement that  
 

V + λ K = A K, 
 
or by rewriting (A-λI)V =K. 
 
Repeated Eigenvalues:  Suppose λ is an eigenvalue with eigenvector V.  Then, Y1(t) = e8t K , is known to be a solution.  Consider the 
function Y2(t) = t e8t V, where V is some other vector.  Plugging this into the differential equation yields the requirement that K + λ V 
= A V, or by rewriting (A-λI)V = K. 
 
Bifurcations: What happens if we let one term of the matrix remain variable 
 
Linear Algebra... 
To solve (SLHC): 
Determine the eigenvalues 81, 82, ..., 8n and corresponding eigenvectors V1, V2, ..., Vn . 
 
Then, note A Vk = 8k Vk , for k = 1, 2, ... n. 
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Create matrices V = [ V1, V2, ... , Vn ] and 7 = diag( 81, 82, ..., 8n ) = matrix with only the eigenvalues on the diagonal and zero 
elsewhere. 
 
Then, it is easy to check that A V = V 7. 
 
So. A = V 7 V-1 allows us to rewrite the original differential equation in the form 
 
YN = V 7 V-1 Y, or 
 
V-1 YN = 7 V-1 Y. 
 
By setting X = V-1 Y yields 
XN = 7 X 
which is a completely decoupled system of equations.  This system easily has solution 
 
xk(t) = ck exp(8kt), for k = 1, 2, ..., n.  
 
So, the solution Y to the original system can be found via 
 
        Y = VX  
  = [ V1, V2, ... , Vn ] X  
  = c1 exp(81t) V1 + c2 exp(82t) V2 + ... + cn exp(8nt) Vn , 
 
which is the same general solution as before. 
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Miscellaneous Other Topics of Interest using Linear Differential Equations 
 
Newton's Law of Cooling -  
Suppose the average rate of temperature change of a body is proportional to the difference in the temperature T of the outside medium 
and the temparature u(t) of the body itself.  Then, [u(t+Δt) - u(t)]/Δt = k[u(t) - T], or by taking limits gives  u'=k(u-T). 
 
Momentum in a Gravitational Field -  
The rate of change in momentum encountered by a moving object is directly proportional to the net force F applied to it.  So, if 
m=mass and v(t)=velocity, momentum=mv gives (mv)'=F or vm'+mv'=F.  Since mass is assumed to be constant, then m'=0 gives F = 
mv' = ma.  (Newton's Second Law) 
 
Falling Bodies -  
Newton's Law of gravitational attraction between two masses of size m1 and m2 states the force F between the two bodies is 
proportional to m1m2/r2, where r is the distance between the two objects.  That is, F=Gm1m2/r2, where G is some constant.  We will 
consider falling bodies near the earths surface.  Hence, m2=mass of earth>>m1=mass of object and r is essentially constant.  So, the 
gravitational force F = (Gm2/r2) m1 = g m1, where g is essentially a constant.  So, as an object falls toward the earth, we get the 
following cases: 
Case 1:  W/o friction or external force:    By (3), F=m1v'.  By above, F=m1g. 
By conservation of energy, we must have m1v' = m1g, or a = v' = g.  Solving yields v(t) = gt + C. 
 
Case 2: With frictional force but without an external force:   
As above, except gravity is opposed by a frictional force proportional to the velocity of the object. 
By conservation of energy, we must have m1v' = m1g - kv. 
 
Case 3:  With friction and a buoyant force: 
As above, except from Archimedes' principle, gravity is also opposed by a force equal to the weight mfg of the fluid displaced by the 
body.  Then, m1v' = m1g - kv - mfg = (m1-mf)g - kv.  Notice what happens when m1 is >, = and < mf. 
 
 
VARIATION OF PARAMETERS: 
- The method of undetermined coefficients is not so hard to apply once you decide what your guess for yp should be.  However, if you 
can not determine an appropriate guess, it does not work.  The method of variation of parameters is more robust in that it applys in all 
situations.  The cost for this is extra effort in needing to do some integrations which may be hard or impossible to carry out. 
 
Remark:  Variation of Parameters is a powerful tool.  We will only consider its use in solving (LNC).  Skip section 4.3. 
Remark:  Variation of Parameters will work for nth order (LNC).  We will derive the equations for n=2 only. 
 
Derivation when n=2: 
Let y1 and y2 solve (LH).  Set y = u y1 + v y2, where u and v are unknown functions (parameters which can vary.) 
Then y' = (u y1 + v y2)' = u'y1 + u y1' + v'y2 + v y2' and y'' = u''y1 + u'y1' + u'y1' + u y1'' + v''y2 + v'y2' + v'y2' + v y2''. 
Plugging into y'' + p(x)y' + q(x)y = g(x) gives 
 

(u''y1 + u'y1' + u'y1' + u y1'' + v''y2 + v'y2' + v'y2' + v y2'') + p(x)(u'y1 + u y1' + v'y2 + v y2') + q(x)(u y1 + v y2) = g(x), or 
u(y1'' + p(x)y1' + q(x)y1) + v(y2'' + p(x)y2' + q(x)y2) + 2(u'y1' + v'y2') + p(x)(u'y1 + v'y2) + u''y1 + v''y2 = g(x), or 

2(u'y1' + v'y2') + p(x)(u'y1 + v'y2) + u''y1 + v''y2 = g(x). 
 
We have free choice of u and v.  So, we want to choose them so that u'y1 + v'y2 = 0.  Then also 0=(u'y1 + v'y2)' gives the original 
equation becomes finally u'y1' + v'y2' = g(x).  Therefore, if y1 and y2 solve (LH), then determining functions u and v such that 

u'y1 + v'y2 = 0 
u'y1' + v'y2' = g(x) 

gives y = u y1 + v y2 solves (LN) as desired.  Notice, the Wronskian of this system is nonzero provided y1 and y2 are linearly 
independent, which is assumed. 
 
Actual Implementation:  To solve (LN) in the case n=2: 
1.  Write the 2nd order (LN) problem in the form y'' + p(x)y' + q(x)y = g(x). 
2.  Determine two linearly independent solutions y1 and y2 for (LH). 
3.  Solve the set of equations below for u' and v'. 
 u'y1 + v'y2 = 0 
 u'y1' + v'y2' = g(x) 
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4.  Integrate u' to obtain u and v' to obtain v. 
5.  Form the general solution y(x) = (c+u(x))y1(x) + (d+v(x))y2(x) . 
 
General Case:  Wronskian 
 
Application:  Automobile Suspension System Revisited Again 
- We now can solve the automobile suspension problem as the car is driving down the road subjected to bumps and other external 
forces.  This was Model 4 from before  my'' + cy' + ky = f(t).  Various choices for f(t) are illustrated on page 259. 
-  We often will rewrite the DE in the form  y'' + (c/m)y' + (k/m)y = f(t), or  y'' + (2d)y' + w2y = f(t). 
 
Remark:  One can express the solutions to the above system graphically by plotting (t,x(t)) and (t,y(t)).  However, often one uses only 
one graph parametrically by plotting (x(t), y(t)).  Such a solution curve is called a trajectory, path or orbit and the xy-plane containing 
the trajectory is called the phase plane of the system. 
 
Remark:  For autonomous systems, the slope of the solution at any time is dependent only upon the solution values x and y and not 
upon time t.  That is, not dependent upon when the solution arrives at the point (x,y).  So, dy/dx = (dy/dt) / (dx/dt) is uniquely 
determined at all values of time. 
 
Results: 
(1)  There is at most one trajectory through any point in the phase plane. 
(2)  A trajectory that starts at a point other than a rest point cannot reach a rest point in a finite amount of time. 
(3)  No trajectory can cross itself unless it is a closed curve.  If it is a closed curve, then the solution is periodic. 
(4)  A trajectory not starting at a rest point: 
 (a)  will move along the same trajectory regardless of starting time 
 (b)  cannot return to the starting point unless the solution is periodic. 
 (c)  can never cross another trajectory. 
 (d)  can only approach a rest point. 
 
 
Remark:  One may use Laplace transform methods for solving systems by taking the Laplace transform of all equations given.  This 
yields now a system of equations in X(s)=L{x(t)} and Y(s)=L{y(t)}.  Solve these equations for X(s) and Y(s).  Then apply inverse 
transforms. 
 


