Proof

\begin{equation*} M(0) = \frac{1}{ \left ( 1-\mu 0 \right )^{r}} \frac{1}{1} = 1. \end{equation*}
Continuing,
\begin{equation*} M'(t) = \frac{r \mu}{ \left ( 1-\mu t \right )^{r+1}} \end{equation*}
and therefore
\begin{equation*} M'(0) = \frac{r \mu}{ \left ( 1-\mu 0 \right )^{r+1}} = r \mu. \end{equation*}
Continuing with the second derivative,
\begin{equation*} M''(t) = \frac{r(r+1) \mu^2}{ \left ( 1-\mu t \right )^{r+2}} \end{equation*}
and therefore
\begin{equation*} M''(0) = \frac{r(r+1) \mu^2}{ \left ( 1-\mu 0 \right )^{r+2}} = r(r+1) \mu^2 = r \mu^2 + r^2 \mu^2 \end{equation*}
which is the squared mean plus the variance for the poisson distribution.
in-context