Proof

If \(r \gt n\) or \(r \lt 0 \) then this is not possible and so the result would be no permuatations. Otherwise, apply the multiplication principle r times noting that there are n choices for the first selection, n-1 choices for the second selection, and with n-r+1 choices for the rth selection. This gives
\begin{align*} _nP_r & = n(n-1) ... (n-r+1)\\ & = n(n-1) ... (n-r+1)\frac{(n-r)!}{(n-r)!}\\ & = \frac{n(n-1) ... (n-r+1)(n-r)!}{(n-r)!}\\ & = \frac{n!}{(n-r)!} \end{align*}
in-context