Case 1: \(R\) discrete
\begin{align*}
\forall x_1,x_2 \in \mathbb{Z} \ni x_1 \lt x_2\\
F(x_2) & = \sum_{x \le x_2} f(x) \\
& = \sum_{x \le x_1} f(x) + \sum_{x_1 \lt x \le x_2} f(x)\\
& \ge \sum_{x \le x_1} f(x) = F(x_1)
\end{align*}
Case 2: \(R\) continuous
\begin{align*}
\forall x_1,x_2 \in \mathbb{R} \ni x_1 \lt x_2\\
F(x_2) & = \int_{-\infty}^{x_2} f(x) dx \\
& = \int_{-\infty}^{x_1} f(x) dx + \int_{x_1}^{x_2} f(x) dx\\
& \ge \int_{-\infty}^{x_1} f(x) dx\\
& = F(x_1)
\end{align*}