Proof

Assume sets A and B satisfy \(A \subseteq B\text{.}\) Then, notice that
\begin{equation*} A \cap (B-A) = \emptyset \end{equation*}
and
\begin{equation*} B = A \cup (B-A). \end{equation*}
\begin{gather*} 0 \le P(B-A)\\ P(A) \le P(A) + P(B-A) \\ P(A) \le P(B) \end{gather*}
in-context