Paragraph

Computing skewness and kurtosis by hand can often be better organized using a table. Below, notice that the \(x_k\) column would be the given data values but the other columns you could again easily compute.
Table 1.7.5. Computing data statistics by hand
\(x_k\) \(x_k^2\) \(x_k^3\) \(x_k^4\)
1 1 1 1
-1 1 -1 1
0 0 0 0
2 4 8 16
2 4 8 16
5 25 125 625
So, \(\Sigma x_k = 9\) and \(\Sigma x_k^2 = 35\) as before and so
\begin{equation*} \overline{x} = \frac{9}{6} = \frac{3}{2} \end{equation*}
and
\begin{gather*} v = \frac{25}{6} - \left ( \frac{3}{2} \right )^2 = \frac{43}{12} \approx 3.58 ,\\ s^2 = \frac{6}{5} \times v = \frac{43}{10} = 4.3,\\ \text{and so } s = \sqrt{4.3} \approx 2.07\text{.} \end{gather*}
But also, \(\Sigma x_k^3 = 141\) and \(\Sigma x_k^4 = 659\text{.}\) Use these in the Alternate Skewness and Kurtosis formulas 1.7.4 to obtain skewness of
\begin{equation*} g_1 = \frac{6}{5} \left [ \frac{141}{6} - 3 \cdot \frac{26}{6} \cdot \frac{3}{2} + 2 \left ( \frac{3}{2} \right )^3 \right ] / s^3 \end{equation*}
and kurtosis of
\begin{equation*} g_2 = \frac{6}{5} \left [ \frac{659}{6} - 4 \cdot \frac{3}{2} \cdot \frac{141}{6} + 6 \left ( \frac{3}{2} \right )^2 \cdot \frac{26}{6} - 3 \cdot \left ( \frac{3}{2} \right )^4 \right ] / s^4. \end{equation*}
Of course, these expanded formulas are much more useful when the data set is significantly larger.
in-context