Paragraph

When using a graphing calculator’s normalcdf(a,b,\(\mu,\sigma\)), pay attention to the the order of terms. For normal distributions, the calculator function always requires an interval. If you are looking for a one-sided probability, such as \(P(X \gt 4)\) for a problem with (say) mean \(\mu = 2\) and \(\sigma = 3\text{,}\) you can replace the infinite upper limit with "large" finite endpoint. Providing something that is more than 10 standard deviations above the mean is for all practical purposes infinity with respect to calculations. So, in this case \(P(X \gt 4)\) can be approximated by normalcdf(4,32,2,3). If you are brave, you can go even higher and use normalcdf(4,100000,2,3) if desired.
in-context