Consider the arrival of requests on a server. Presume that the requests are considered as coming from an anonymous and large collection of users independently of each other on an average of 50 requests per second. If X measures the number of requests per second, determine
the probability that in any given second the server gets fewer than 50 requests
\(\displaystyle P(\mu - 2\sigma \le X \le \mu + 2\sigma)\)
the expected number of requests per hour.