\begin{align*}
\sigma^2 & = E[X(X-1)] + \mu - \mu^2 \\
& = \sum_{x=0}^{\infty} x(x-1) \cdot \frac{\mu^x}{x!} e^{-\mu} + \mu - \mu^2\\
& = e^{-\mu} \mu^2 \sum_{x=2}^{\infty} \frac{\mu^{x-2}}{(x-2)!} + \mu - \mu^2\\
& = e^{-\mu} \mu^2 \sum_{k=0}^{\infty} \frac{\mu^k}{k!} + \mu - \mu^2\\
& = \mu^2 + \mu - \mu^2 \\
& = \mu
\end{align*}
in-context