\begin{align*} \sum_{x=0}^n x \frac{\binom{n_1}{x} \binom{n-n_1}{r-x}}{\binom{n}{r}} & = \frac{1}{\binom{n}{r}} \sum_{x=1}^n \frac{n_1(n_1-1)!}{(x-1)!(n_1-x)!} \binom{n-n_1}{r-x}\\ & = \frac{n_1}{\binom{n}{r}} \sum_{x=1}^n \frac{(n_1-1)!}{(x-1)!((n_1-1)-(x-1))!} \binom{n-n_1}{r-x} \\ & = \frac{n_1}{\frac{n(n-1)!}{r!(n-r)!}} \sum_{x=1}^n \binom{n_1-1}{x-1} \binom{n-n_1}{r-x} \end{align*}
in-context