Checkpoint 9.9.1. - Computing basic standard normal probabilities.
Compute
- \begin{equation*} P( Z \gt 0) \end{equation*}
- \begin{equation*} P( Z \lt 0.892) \end{equation*}
- \begin{equation*} P( Z \lt -0.892) \end{equation*}
- \begin{equation*} P( -1.45 \lt Z \lt 2.37) \end{equation*}
- \begin{equation*} P( -1 \lt Z \lt 1) \end{equation*}which is the probability of lying within 1 standard deviation of the mean.
- \begin{equation*} P( -2 \lt Z \lt 2) \end{equation*}which is the probability of lying within 2 standard deviations of the mean.
- \begin{equation*} P( -3 \lt Z \lt 3) \end{equation*}which is the probability of lying within 3 standard deviations of the mean.
- A value for a so that\begin{equation*} P( Z \lt a) = 0.8 \end{equation*}which would be the location of the 80th percentile.