Checkpoint 4.9.13. Single Elimination Tournament.
Consider a n=4 team single-elimination tournament where the teams are "seeded" from 1 (the best team) to 4 (the worst team). For this tournament, team 1 plays team 4 and team 2 plays team 3. The winner of each play each other to determine the final winner. When teams j and k play, set P(j wins) = \(\frac{k}{j+k}\) and similarly for team k. Assuming separate games are independent of each other, determine the probability that team 4 wins the tournament. What about with 8 teams? What about 64 teams?