Example 12.1.5. Application: Converting repeating decimals to fractional form.

Consider this example:
\begin{align*} 2.48484848... & = 2 + 0.48 + 0.0048 + 0.000048 + ...\\ & = 2 + 0.48(1 + 0.01 + 0.0001 + ... ) = 2 + 0.48 \sum_{k=0}^\infty (0.01)^k \end{align*}
Therefore, applying the Geometric Series
\begin{align*} 2.48484848... & = 2 + 0.48 \frac{1}{1-0.01} \\ & = 2 + 0.48 \frac{100}{99} = 2 + \frac{48}{99} \end{align*}
in-context