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Preface

This text is intended for a one-semester course in probability and statistics
that presumes calculus knowledge up to integration techniques. It is perhaps
helpful if a student has already been exposed to sequences and series but much
of what is needed is reviewed in the text.

An interactive version of this text is available at
http://math.mc.edu/travis/mathbook/Probability/EssentialsP robabilityAndStatistics.html

http://math.mc.edu/travis/mathbook/Probability/EssentialsP robabilityAndStatistics.html
and an pdf version with active links is available at
http://math.mc.edu/travis/mathbook/Probability/EssentialsP robabilityAndStatistics.pdf

http://math.mc.edu/travis/mathbook/Probability/EssentialsP robabilityAndStatistics.pdf.
A collection of WeBWorK online homework problems are available to cor-

relate with the material in this text. Copies of these sets of problems are
available by contacting the author. These exercises are considered an integral
part when using this text although a static version of these is included in the
appendix.

To successfully utilize this text, a student should review the requisite ma-
terial and perhaps review the proofs and derivations if appropriate. While
moving through the text, the student should review each of the examples and
then attempt each of the interactive WeBWorK exercises. Whenever an inter-
active cell comes up, the student should play around with the cell and perhaps
change the input data as appropriate to experiment. When a section is com-
pleted, a student should work the WeBWorK exercises (not part of this text)
or some other exercises provided by the instructor and attempt the exercises
provided in this text...many of which are famous examples or exercises that
might have special significance. Some are (of course) just easy and most of the
textbook exercises have solutions provided.

WeBWorK (webwork.maa.org) is an open-source online homework system
for math and science courses. WeBWorK is supported by the MAA and the
NSF and comes with a Open Problem Library (OPL) of over 35,000 homework
problems. Problems in the OPL target most lower division undergraduate
math courses and some advanced courses. Supported courses include college
algebra, discrete mathematics, probability and statistics, single and multivari-
able calculus, differential equations, linear algebra and complex analysis.

Sage (sagemath.org) is a free, open-source, software system for advanced
mathematics, which is ideal for assisting with a study of abstract algebra. Sage
can be used either on your own computer, a local server, or on SageMathCloud
(https://cloud.sagemath.com).

R (https://www.r-project.org/) is a programming language and free soft-
ware environment for statistical computing and graphics supported by the R
Foundation for Statistical Computing. The R language is widely used among
statisticians and data miners for developing statistical software and data anal-
ysis. In this text, the sage cell is used also for interactive computations related
to R.

v
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Chapter 1

Statistical Measures

1.1 Introduction

To compute your final grade in a class your teacher will likely consider the
scores you have earned on various assignments and examinations completed
during the duration of the course. However, she ultimately will likely be re-
quired to assign some numerical score indicating your level of success in the
course. One grade to rule them all. This final grade can only be one value and
it would make sense that the grade be a reflection of your work on these tasks.
So, what is a fair way for your teacher to complete this task?

Through this process, you will also often need to take into account whether
that data set is the entire list of possibilities–known as the population–or just a
subset of that population perhaps obtained by taking repeated measurements
–that is, a sample.

In general, it is often useful to make decisions using quantitative data but
making those decisions can be somewhat arbitrary without a mathematical
basis supporting those decisions. In this chapter, you will consider a number
of ways to use point values to represent a given set of data. Each of these quan-
titative metrics will be called a "statistical measure" and will, in some fashion,
describe using one number some property of the entire data set. Such mea-
sures are part of what is known as "descriptive statistics". Later, you will learn
about how other metrics can be used to predict properties of the underlying
situation. Doing this is part of what is known as "inferential statistics".

So, let’s go and hopefully you will in some measure enjoy the ride!

1.2 Measurement Scales

In creating statistical measures, you might want to consider one of the following
general types.

• Nominal measures - In this case, data falls into mutually exclusive and
exhaustive categories for which the numerical value is only used for iden-
tification purposes. For example, assigning Male = 1, Female = -1.

• Ordinal measures - In this case, data consists of discrete numerical values
which can be ranked from lowest to highest or vice versa. For example,
your grades in a number of classes are used to compute your GPA–which
is a single number.

1



2 CHAPTER 1. STATISTICAL MEASURES

• Interval measures - In this case, data possesses an order and where the
distance between data values is of significance. For example, heights and
weights.

• Ratio measures - In this case, data can be expressed as a position in
some interval and where ratios between observations have meaning. For
example, percentile rankings

In the subsequent sections of this chapter, you will see that a number
of different measures are available for most data sets. Determining which
"correct" measure to use for describing any given data set will depend the
actual situation surrounding the collection of the data.

1.3 Statistical Measures of Position

Given a collection of data, sorting the data may provide several useful descrip-
tors. When sorting data, you can easily use something like a spreadsheet for
larger data sets but in this section you will also see there are ways to perform a
sort by hand. In either case, statistical measures of position generally involve
very little computational work once the data is sorted and take into account
only the order of the data from lowest to highest. To assist with notation,
we will generally use x-values to represent the original raw data and y-values
to represent that same data when ordered with the subscript indicating the
positional placement.
Definition 1.3.1 Order Statistic. From the data set x1, x2, ..., xn, assume
that when sorted it is denoted y1, y2, ..., yn where

y1 ≤ y2 ≤ ... ≤ yn.

Then, yk is known as the kth order statistic. ♦

Example 1.3.2 Age of Presidents - order statistics. The age at inau-
guration for presidents from 1981-2019 gives the data x1 = 69, x2 = 64, x3 =
46, x4 = 54, x5 = 47, x6 = 70 (Reagan, Bush, Clinton, Bush, Obama, Trump).
For this data, the order statistics are denoted y1 = 46, y2 = 47, y3 = 54, y4 =
64, y5 = 69, y6 = 71. �

Once the data is sorted, it should be very easy for you to locate the smallest
and largest values.
Definition 1.3.3 Minimum/Maximum:. For a given data set, the smallest
and largest values are known as the minimum and maximum, respectively. In
our notation, minimum = y1 and the maximum = yn ♦

Example 1.3.4 Age of Presidents - Minimum/Maximum. Using the
President inauguration data 1.3.2, minimum = y1 = 46 and maximum = y6 =
70. �

A value that separates ordered data into two groups with a desired percent-
age on each side is called a percentile. There are multiple ways that have been
created that achieve this goal. In this text we present two and will consistently
use the first one presented below. For each, in general, a given percentile is
a numerical value at which approximately a given percentage of the data is
smaller.

The definition presented below provides for a unique measure for each
unique value of p that corresponds to the PERCENTILE.EXC macro in Excel.
This version starts by computing (n + 1)p where 0 < p < 1 and using this to
linearly interpolate between two adjacent entries in the sorted list. Another
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option that corresponds to PERCENTILE.INC (and PERCENTILE) in Excel
is to start with (n − 1)p + 1 for determining how to pick the two adjacent
entries and then proceeding with linear interpolation. Again, the definition
below utilizes the first approach.
Definition 1.3.5 Percentiles. For 0 < s < 1 and for order statistics
y1, y2, ..., yn define the 100s-th percentile to be

P s = (1− r)ym + rym+1

where m is the integer part of (n+1)s, namely

m = b(n+ 1)sc

and
r = (n+ 1)s−m,

the fractional part of (n+1)s. ♦

Checkpoint 1.3.6 Compute the following percentile values.

Consider the following data set:

39 20 36 27 51 27 12 16 12

51 39 28 51 13 27 34 49 40

Find the 15th and 88th percentiles for this data.
15th percentile =
88th percentile =

Example 1.3.7 Presidential Percentile. To compute, say, the 42nd per-
centile for the President inauguration data presented earlier 1.3.2 consider s =
0.42. Since there are 6 numbers in our data set, then

(n+ 1)s = 7 · 0.42 = 2.94

and so m = 2 and r = 0.94. Thus, the percentile will lie between y2 = 47 and
y3 = 54 and much closer to 54 than 47. Numerically

P 0.42 = 0.06 · 47 + 0.94 · 54 = 53.58.

�

The formula for percentiles determines a weighted average between ym and
ym+1 which is unique for distinct values of p provided each of the data values
are distinct. Note that if some of the y-values are equal then some of these
averages might be averages of equal numbers and will therefore be the common
value.

Some special percentiles are provided special names...
Definition 1.3.8 Quartiles. Given a sorted data set, the first, second, and
third quartiles are the values of Q1 = P 0.25, Q2 = P 0.5 and Q3 = P 0.75. ♦

It should be noted that many graphing calculators often compute quartiles
using a straight average of two adjacent entries rather than by using the formula
above. This causes some difficulty and especially so when n mod 4 = 2.
Example 1.3.9 Q1 and Q3 when n mod 4 = 2. Suppose n = 22 = 5(4)
+ 2. Computing the first quartile as defined above gives (n+1)p = 23(0.25) =
5.75 = 5 + 0.75 = m + r. Therefore,

Q1 = 0.25× y5 + 0.75× y6
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which is a value closer to y6. Many graphing calculators however quickly ap-
proximate this with

0.5× y5 + 0.5× y6

so you should be aware of this possible difference. You should also notice that
in this case p = 0.25 but r = 0.75 so these values are not required to be the
same. �

Definition 1.3.10 Deciles:. Given a sorted data set, the first, second, ...,
ninth deciles are the value of D1 = P 0.1, D2 = P 0.2, ..., D9 = P 0.9 ♦

Example 1.3.11 Small Example - Quartiles. Consider the following
data set: 2,5,8,10. The 50th percentile should be a numerical value for which
approximately 50
Using the definition 1.3.5, the 25th percentile is computed by considering

(n+ 1)p = (4 + 1)0.25 = 5/4 = 1.25.

So, m = 1 and r = 0.25. Therefore

P 0.25 = 0.75× 2 + 0.25× 5 = 2.75

as noted above.
Similarly, the 75th percentile is given by

(n+ 1)p = (4 + 1)0.75 = 15/4 = 3.75.

So, m = 3 and r = 0.75. Therefore

P 0.75 = 0.25× 8 + 0.75× 10 = 9.5

It is interesting to note that 3 also lies between 2 and 5 as does 2.75 and has
the same percentages above (75 percent) and below (25 percent). However, it
should designate a slightly larger percentile location. Indeed, going backward:

3 = (1− r)× 2 + r × 5

⇒ r =
1

3

⇒ (n+ 1)p = 1 +
1

3
=

4

3

⇒ p =
4

15
≈ 0.267

and so 3 would actually be at approximately the 26.7th percentile. �

Checkpoint 1.3.12 In general, given a numerical value within the range of a
given data set, one can determine the percentile ranking of that value by revers-
ing the general formula for percentile and solving for p, given P s. Determine
such a formula/process for doing this in general.

For your data set 2,5,8,10, Q1 = 2.75, Q2 = 6.5, and Q3 = 9.5.
For a given data set, a summary of these statistics is often desired in order

to give the user a quick overview of the more important order statistics.
Definition 1.3.13 5-number summary. Given a set of data, the 5-number
summary is a vector of the order statistics given by

< minimum, Q1, Q2, Q3,maximum > .

♦
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You can also compute these statistics automatically using the opensource
statistical software known simply as "R". The following interactive cell uses
the opensource software "Sage" to perform this calculation using the freely
available web portal at sagemath.sagecell.org. You can change the data list
if you want to use this to compute values for a different collections of num-
bers. The five-number-summary is displayed graphically using a "Box-Plot".
Graphical representations of data will be discussed later in this chapter. You
should compare the answers found using R with the values produced by our
definition 1.3.5

data <- c( 1, 2, 5, 7, 7, -1, 3, 2) # concatenate the
following items into a list

paste("Quartiles:")
quantile(data)
paste("Specific␣Percentiles:")
quantile(data , c(.32, .57, .98)) # find the 32nd, 57th and

98th percentiles
paste("Box␣and␣Whisker␣Diagram:")
boxplot(data , horizontal=TRUE)

Example 1.3.14 Small example - 5 number summary. Returning to
our previous example, the five number summary would be

< 2, 2.75, 6.5, 9.5, 10 > .

�

1.4 Statistical Measures of the Middle
Definition 1.4.1 Arithmetic Mean. Suppose X is a discrete random
variable with range R = x1, x2, ..., xn. The arithmetic mean is given by

x1 + ...+ xn
n

=

∑n
k=1 xk
n

.

If this data comes from sample data then we call it a sample mean and denote
this value by x. If this data comes from the entire universe of possibilities
then we call it a population mean and denote this value by µ. When presented
with raw data, it might be good to generally presume that data comes from a
sample and utilize x. ♦

To illustrate, consider the previous data set: 2,5,8,10. The arithmetic mean
is given by

x =
2 + 5 + 8 + 10

4
=

25

4
= 6.25.

The mean is often called the centroid in the sense that if the x values were
locations of objects of equal weight, then the centroid would be the point where
this system of n equal masses would balance. Play around with the interactive
cell below by entering your own data values into the first list.

x = [2, 5, 8, 10, 11] # Put your data values in this list
x.sort()

mu = mean(x)
n = len(x)
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pts = [(x[0] ,0.05)]
M = 0.2
for k in range(1,n):

if x[k]==x[k-1]:
pts.append ((x[k],pts[k -1][1]+0.1))
M += 0.1

else:
pts.append ((x[k] ,0.05))

G = points(pts ,size =100, figsize =[10 ,2])
G += polygon ([(mu ,0), (mu+0.2 , -0.5),

(mu -0.2 , -0.5)],color='brown ')
G.show(ymin=-0.5, ymax = M)

The values can all be provided with varying weights if desired and the result
is called the weighted arithmetic mean and is given by

m1x1 + ...+mnxn
m1 + ...+mn

=

∑n
k=1mkxk∑n
k=1mk

.

This is often how your teacher will actually compute your final grade in a class
where the mk are the relative weights for each assignment grade.

x = [2, 5, 8, 10] # Put _unique_ data values in this list
w = [1, 2.5, 2.5, 4] # Scale to be at most 10 and not tiny

for good image
wsum = sum(w)

n = len(x)
pts = [(x[0] ,0.05)]
M = 0.2
mu = 0
for k in range(1,n):

mu += x[k]*w[k]
if x[k]==x[k-1]:

pts.append ((x[k],pts[k -1][1]+0.1))
M += 0.2

else:
pts.append ((x[k] ,0.05))

mu = mu/wsum
G = Graphics ()
for k in range(n):

G += point(pts[k],size =100*w[k])
P = polygon ([(mu ,0), (mu+0.2 , -0.5),

(mu -0.2 , -0.5)],color='brown ')
(G+P).show(ymin=-0.5, ymax = M)

Example 1.4.2 Computing class final grade. Suppose in a given class
you have a daily grade of 92, exam 1 grade of 85, exam 2 grade of 87, and
a final exam grade of 93. IF the daily grade counts 10 percent, the first two
exams count 25 percent each and the final counts 40 percent then your final
grade would be

0.10 · 92 + 0.25 · 85 + 0.25 · 87 + 0.40 · 0.93

0.10 + 0.25 + 0.25 + 0.40
= 89.4.

It would then appear that you might want to do some bargaining with your
teacher about how nice it would be to round that up. �
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Definition 1.4.3 Median:. A positional measure of the middle is often
utilized by finding the location of the 50th percentile. This value is also called
the median and indicates the value at which approximately half the sorted data
lies below and half lies above. ♦

For data sets with an odd number of values, this is the "middle" data value
if one were to successively cross off pairs from the two ends of the sorted data.
For data sets with an even number of values, this is a average of the two data
values left after crossing off all other pairs. Using the order statistics, the
median equals

yn+1
2

if n is odd and

yn
2

+ yn
2 +1

2

if n is even.

From the Presidential data 1.3.2, note that you are considering an even
number of data values and so the median is given by (54+64)/2 = 59.

Definition 1.4.4 Midrange:. The midrange is a mixture of the mean and
median where one takes the simple average of the maximum and minimum
values in the data set. Using the order statistics, this equals

y1 + yn
2

♦

From the Presidential data 1.3.2, the maximum is 70 and the minimum is
46 so the midrange is 58, the average of these two.

There are several advantages and disadvantages associated with each of
these measures. The mean utilizes all of the data values so each term is im-
portant. Utilizes them all even if some of the data values might suffer from
collection errors. The median ignores outliers (which might be a result of col-
lection errors) but does not account for the relative differences between terms.
The midrange is very easy to compute but ignores the relative differences for
all terms but the two extremes. A similar collection of features and drawbacks
are associated with all descriptive statistics.

You can again compute many statistics automatically using R...

data <- c( 1, 2, 5, 7, 7, -1, 3, 2) # concatenate the
following items into a list

paste("Mean␣=␣", mean(data))
paste("Median␣=", median(data))

Example 1.4.5 USA State Population Measures of the Middle. The
US Census Bureau reported the following state populations (in millions) for
2013: Spreadsheet

Data/USA_States_Populations_2014.xlsx
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State Population
Wyoming 0.6
Vermont 0.6

District of Columbia 0.6
North Dakota 0.7

Alaska 0.7
South Dakota 0.8

Delaware 0.9
Montana 1

Rhode Island 1.1
New Hampshire 1.3

Maine 1.3
Hawaii 1.4
Idaho 1.6

West Virginia 1.9
Nebraska 1.9

New Mexico 2.1
Nevada 2.8
Kansas 2.9
Utah 2.9

Arkansas 3
Mississippi 3

Iowa 3.1
Connecticut 3.6
Oklahoma 3.9

Oregon 3.9
Kentucky 4.4
Louisiana 4.6

South Carolina 4.8
Alabama 4.8
Colorado 5.3

Minnesota 5.4
Wisconsin 5.7
Maryland 5.9
Missouri 6

Tennessee 6.5
Indiana 6.6
Arizona 6.6

Massachusetts 6.7
Washington 7

Virginia 8.3
New Jersey 8.9

North Carolina 9.8
Michigan 9.9
Georgia 10

Ohio 11.6
Pennsylvania 12.8

Illinois 12.9
Florida 19.6

New York 19.7
Texas 26.4

California 38.3

Table 1.4.6: USA State Populations - 2014
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Determine the minimum, maximim, midrange, and mean for this data.
Solution. Notice that these are already in order so you can presume y1 = 0.6
million is the minimum and y50 = 38.3 million is the maximum. Therefore, the
midrange is given by

0.6 + 38.3

2
=

38.9

2
= 19.45million.

In this collection of "states" data the District of Columbia is included so that
the number of data items is n=51. The mean of this data takes a bit of
arithmetic but gives

x =

∑51
k=1 yk
51

=
316.1

51
≈ 6.20

million residents.
Since the number of states is odd, the median is found by looking at the 26th
order statistic. In this case, that is the 4.4 million residents of Kentucky, i.e.
y26 = 4.4. �

1.5 Statistical Measures of Variation
These measures provide some indication of how much the data set is "spread
out". Indeed, note that the data sets -2,-1,0,1,2 and -200,-100,0,100,200 have
the same mean but one is much more spread out than the other. Measures of
variation should catch this difference.
Definition 1.5.1 Range:. Using the order statistics,

yn − y1.

♦

It is trivial to note that the range is very easy to compute but it completely
gnores all data values but the two ends.

From the Presidential data 1.3.2, the maximum is 69 and the minimum is
46 so the range is 23, the difference of these two.
Definition 1.5.2 Interquartile Range (IQR):.

IQR = P 0.75 − P 0.25.

♦

For the data set 2, 5, 8, 10, you have found that Q1 = 2.75 and Q3 = 9.5.
Therefore,

IQR = 9.5− 2.75 = 6.75.

Average Deviation from the Mean (Population): Given a population data
set x1, x2, ..., xn with mean µ each term deviates from the mean by the value
xk − µ. So, averaging these gives∑n

k=1(xk − µ)

n
=

∑n
k=1 xk
n

−
∑n
k=1 µ

n
= µ− µ = 0.

This metric is therefore always zero for any provided set of data since cancella-
tion makes this not useful. So, we need to determine ways to avoid cancellation.

Average Absolute Deviation from the Mean (Population):∑n
k=1 |xk − µ|

n
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which, although nicely stated, is difficult to deal with algebraically since the
absolute values do not simplify well algebraically. To avoid this algebraic road-
block, we can look for another way to nearly accomplish the same goal by
squaring and then square rooting.

Average Squared Deviation from the Mean (Population):∑n
k=1(xk − µ)2

n

which will always be non-negative but can be easily expanded using algebra.
Since this is a mouthful, this measure is generally called the "variance".

Using the average squared deviation from the mean, differences have been
squared. Thus all of the squared differences added are non-negative but very
small ones have been made even smaller and larger ones have been made rel-
atively larger. To undo this scaling issue, one must take a square root to get
things back into the right ball park.
Definition 1.5.3 Variance and Standard Deviation. The variance is the
average squared deviation from the mean. If this data comes from the entire
universe of possibilities then we call it a population variance and denote this
value by σ2. Therefore

σ2 =

∑n
k=1(xk − µ)2

n

The standard deviation is the square root of the variance. If this data comes
from the entire universe of possibilities then we call it a population standard
deviation and denote this value by σ. Therefore

σ =

√∑n
k=1(xk − µ)2

n
.

If data comes from a sample of the population then we call it a sample variance
and denote this value by v. Since sample data tends to reflect certain "biases"
then we increase this value slightly by n

n−1 to give the sample variance

s2 =
n

n− 1

∑n
k=1(xk − x)2

n
=

∑n
k=1(xk − x)2

n− 1
.

and the sample standard deviation similarly as the square root of the sample
variance. ♦

From the data 2,5,8,10, you have found that the mean is 6.25. Computing
the variance then involves accumulating and averaging the squared differences
of each data value and this mean. Then

1

4

(
(2− 6.25)2 + (5− 6.25)2 + (8− 6.25)2 + (10− 6.25)2

)
=

18.0625 + 1.5625 + 3.0625 + 14.0625

4

=
36.75

4
= 9.1875.

Theorem 1.5.4 Alternate Forms for Variance.

σ2 =

(∑n
k=1 x

2
k

n

)
− µ2

=

[∑n
k=1 xk(xk − 1)

n

]
+ µ− µ2
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Proof.

σ2 =

∑n
k=1(xk − µ)2

n

=

∑n
k=1(x2

k − 2xkµ+ µ2)

n

=

∑n
k=1 x

2
k − 2µ

∑n
k=1 xk + nµ2)

n

=

(∑n
k=1 x

2
k

n

)
− µ2

The second part is proved similarly. Using the first part of the proof above,

σ2 =

∑n
k=1(xk − µ)2

n

=

(∑n
k=1 x

2
k

n

)
− µ2

=

(∑n
k=1 xk(xk − 1) + xk

n

)
− µ2

=

(∑n
k=1 xk(xk − 1)

n

)
+ µ− µ2 �

Example 1.5.5 Computing means and variances by hand. In the data
table below, notice that the xk column would be the given data values but the
column for x2

k you could easily compute.

xk x2
k

1 1
-1 1
0 0
2 4
2 4
5 25

Table 1.5.6: Sample Grouped Data

So, Σxk = 9 and Σx2
k = 35. Therefore x = 9

6 = 3
2 and v =

Σx2
k

6 − (x)2 =

( 35
6 −

3
2

2
= 70−18

12 = 26
6 . Therefore, s2 = 6

5 × v = 26
5 . �

Use R to compute these values...

data <- c( 1, -1, 0, 2, 2, 5) # concatenate the following
items into a list

paste("Variance␣=␣", var(data))
paste("Standard␣Dev␣=␣", sd(data))
paste("Inter␣Quantile␣Range␣=",IQR(data))
paste("Box␣and␣Whisker␣Diagram:")
boxplot(data , horizontal=TRUE)

Once again, the Population of the individual USA states according to the
2013 Census is considered below.
Checkpoint 1.5.7 USA State Population Measures of Variation.
Using the US Census Bureau state populations 1.4.5 (in millions) for 2014
provided earlier, determine the range, quartiles, and variance for this sample
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data.
Solution. Again, you should note that these are already in order so the range
is quickly found to be

yn − y1 = 38.3− 0.6 = 37.7

million residents.
For IQR, we first must determine the quartiles. The median (found earlier)
already is the second quartile so we have Q2 = 4.5 million. For the other two,
the formula for computing percentiles gives you the 25th percentiile

(n+ 1)p = 51(1/4) = 12.75

Q1 = P 0.25 = 0.25× 1.9 + 0.75× 2.1 = 2.05

and the 75th percentile

(n+ 1)p = 51(3/4) = 38.25

Q3 = P 0.75 = 0.75× 7 + 0.25× 8.3 = 7.325.

Hence, the IQR = 7.325 - 2.05 = 5.275 million residents.
From the computation before, again note that n=51 since the District of
Columbia is included. The mean of this data found before was found to be ap-
proximately 6.20 million residents. So, to determine the variance you may find
it easier to compute using the the alternate variance formulas Theorem 1.5.4.

v =

(∑n
k=1 y

2
k

n

)
− µ2

≈ 4434.37

51
− (6.20)2

= 48.51

and so you get a sample variance of

s2 ≈ 51

50
· 48.51 = 49.48

and a sample standard deviation of

s ≈
√

49.48 ≈ 7.03

million residents.

The state population data set has been entered for you in the R cell below...

data <- c (0.6 ,0.6 ,0.6 ,0.7 ,0.7 ,0.8 ,0.9 ,1 ,1.1 ,1.3 ,1.3 ,1.4 ,1.6 ,
1.9 ,1.9 ,2.1 ,2.8 ,2.9 ,2.9 ,3 ,3 ,3.1 ,3.6 ,3.9 ,3.9 ,4.4 ,4.6 ,
4.8 ,4.8 ,5.3 ,5.4 ,5.7 ,5.9 ,6 ,6.5 ,6.6 ,6.6 ,6.7 ,7 ,8.3 ,
8.9 ,9.8 ,9.9 ,10 ,11.6 ,12.8 ,12.9 ,19.6 ,19.7 ,26.4 ,38.3)
paste("Variance␣=␣", var(data))
paste("Standard␣Dev␣=␣", sd(data))
paste("Inter␣Quantile␣Range␣=",IQR(data))



1.6. ADJUSTING STATISTICAL MEASURES FOR GROUPED DATA 13

1.6 Adjusting Statistical Measures for Grouped
Data

As you considered the measures of the center and spread before, each data
point was considered individually. Often, data may however be grouped into
categories. The number of data items in each category is called the "frequency"
of that outcome and the collection of these frequencies for all outcomes is called
a "frequency distribution".

1.6.1 Data Grouped into Single-valued Categories
In this case, rather than considering xk to be the kth data value can take
advantage of the grouping to perhaps save a bit on arithmetic.

Indeed, let’s assume that data is grouped into m categories x1, x2, ..., xm
with corresponding frequencies f1, f2, ..., fm. Then, for example, when com-
puting the mean rather than adding x1 with itself f1 times just compute x1×f1

for the first category and continuing through the remaining categories. This
gives the following grouped data formula for the mean

µ =
x1f1 + ...+ xmfm
f1 + ...+ fm

=

∑m
k=1 xkfk∑m
k=1 fk

.

and the following grouped data formula for the variance (along with one equiv-
alent form)

σ2 =

∑m
k=1(xk − µ)2fk∑m

k=1 fk
=

∑m
k=1 x

2
kfk∑m

k=1 fk
− µ2

Checkpoint 1.6.1 Consider the following data set
3, 1, 2, 2, 3, 1, 3, 4, 5, 5, 1, 4, 5, 1, 2, 4, 5, 3, 2, 5, 2, 1, 2, 2, 5
Create a frequency distribution and determine the sample mean and variance.
Solution. Collecting this data into a frequency distribution gives

xk fk
1 5
2 7
3 4
4 3
5 6

Table 1.6.2: Grouped Discrete Data

Therefore,

x =
1× 5 + 2× 7 + 3× 4 + 4× 3 + 5× 6

5 + 7 + 4 + 3 + 6
=

5 + 14 + 12 + 12 + 30

25
=

43

25

and

v =
12 × 5 + 22 × 7 + 32 × 4 + 42 × 3 + 52 × 6

5 + 7 + 4 + 3 + 6
−
(

43

25

)2

=
5 + 28 + 36 + 48 + 150

25
−
(

43

25

)2

=
4826

625
≈ 7.7216

and so s2 = 25
24

4826
625 ≈ 8.043.
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1.6.2 Data Grouped into Continuous Intervals
For measures on data grouped into intervals, it is somewhat difficult to do cal-
culations when the data no longer exists as individual values since all you know
is the frequencies of each interval. You can use "class marks"...the midpoints
of each interval...as representers for all of the items that fell into that interval
for computing means and variances. For positional measures, you want to ap-
proach this in the same manner as with percentiles before. That is, my doing
some sort of linear interpolation on the width of each interval.

So, for medians, consider the following approach:

1. Compute frequencies fk and cummulative frequencies Fk for each class

2. Set m = total cummulative frequency/2 = Flast/2

3. Determine the interval k where m ∈ [Fk−1, Fk]

4. Set median = (bk − ak)m−Fk−1

fk
+ ak

Example 1.6.3 Computing Median for Interval Grouped Data.

[ak, bk] fk
[0,5) 5
[5,10) 7
[10,20) 4
[20,23) 3
[23,30) 6

Table 1.6.4: Interval Frequency Distribution

The total cummulative frequency is 25 and so m = 25
2 = 12.5 which lies in the

k = 3 interval [10,20) and F2 = 12. Therefore

median = (20− 10)
12.5− 12

4
+ 10 = 11.25

�

1.7 Other Statistical Point Measures
Above, we have investigated statistical measures that help determine the mid-
dle and the spread of a given data set. There are however other metrics avail-
able that help describe the distribution of that data. Skewness is one of those
metrics and describes any lack of symmetry of the data set’s distribution and
whether data is stretched out to one side or the other.
Definition 1.7.1 Skewness. For population data, the Skewness of
x1, x2, ..., xn is given by

1

σ3

∑n
k=1(xk − µ)3

n
.

For sample data, the Skewness of x1, x2, ..., xn is given by

1

s3

∑n
k=1(xk − x)3

n
.

♦
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A positive skewness indicates that the positive (xk − µ)3 terms (likewise
(xk − x)3 terms) overwhelm the negative terms. So, a positive skewness indi-
cates that the data set is strung out to the right. Likewise, a negative skewness
indicates a data set that is strung out to the left.

Data might tend to be clustered around the mean. The "kurtosis" can be
used to measure how closely data resembles a "bell-shaped" collection.
Definition 1.7.2 Kurtosis. For population data, the Kurtosis of
x1, x2, ..., xn is given by

1

σ4

∑n
k=1(xk − µ)4

n
.

For sample data, the Kurtosis of x1, x2, ..., xn is given by

1

s4

∑n
k=1(xk − x)4

n
.

♦

A kurtosis of 3 indicates that the data is perfectly bell shaped (a "normal"
distribution) whereas data further away from 3 indicates data that is less bell
shaped.
Theorem 1.7.3 Alternate Formulas for Skewness and Kurtosis.

skewness =
1

s3

[∑n
k=1 x

3
k

n
− 3vx− x3

]
kurtosis =

1

s4

[∑n
k=1 x

4
k

n
− 4x

∑n
k=1 x

3
k

n
+ 6x2v − 3x4

]
Proof. For skewness, expand the cubic and break up the sum. Factoring out
constants (such as x) gives∑n

k=1(xk − x)3

n

=

∑n
k=1 x

3
k

n
− 3x

∑n
k=1 x

2
k

n
+ 3x2

∑n
k=1 xk
n

−
∑n
k=1 x

3

n

=

∑n
k=1 x

3
k

n
− 3x(v + x2) + 3x3 − x3

=

∑n
k=1 x

3
k

n
− 3xv − x3

and divide by the cube of the standard deviation to finish. Note that the first
expansion in the derivation above can be used quickly if the data is collected
in a table and powers easily computed.
For kurtosis, similarly expand the quartic and break up the sum as before.
Note that you can extract the value of the cubic term by solving for that term
in the skewness formula above. Then,∑n

k=1(xk − x)4

n

=

∑n
k=1 x

4
k

n
− 4x

∑n
k=1 x

3
k

n
+ 6x2

∑n
k=1 x

2
k

n
− 4x3

∑n
k=1 xk
n

+

∑n
k=1 x

4

n

=

∑n
k=1 x

4
k

n
− 4x

∑n
k=1 x

3
k

n
+ 6x2(v + x2)− 4x4 + x4

=

∑n
k=1 x

4
k

n
− 4x

∑n
k=1 x

3
k

n
+ 6x2v − 3x4

and then divide by the fourth power of the standard deviation. Note again that
the first expansion in the derivation above might also be a useful shortcut. �
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Going back to a previous example...
Computing skewness and kurtosis by hand can often be better organized

using a table. Below, notice that the xk column would be the given data values
but the other columns you could again easily compute.

xk x2
k x3

k x4
k

1 1 1 1
-1 1 -1 1
0 0 0 0
2 4 8 16
2 4 8 16
5 25 125 625

Table 1.7.4: Computing data statistics by hand

So, Σxk = 9 and Σx2
k = 35 as before and so x = 3

2 , v = 26
6 , s2 = 6

5×v = 26
5 ,

and so s =
√

26
5 =

√
5.2. But also, Σx3

k = 141 and Σx4
k = 659. Use these in

the formulas above to obtain skewness of[
141

6
− 3 · 26

5
· 3

2
−
(

3

2

)2
]
/s3

and kurtosis of[
659

6
− 4 · 3

2
· 141

6
+ 6

(
3

2

)2

· 26

5
− 3 ·

(
3

2

)4
]
/s4.

1.8 Visual Statistical Measures - Graphical Rep-
resentation of Data

Data sets can range from small to very large. Visual representations of these
data sets often allow you to see trends and reveal a lot about the distribution
of the data values.

1.8.1 Histograms
Frequency Histograms - height matters

Consider the data set given by

xk fk
1 8
2 12
3 6
4 3
5 1
6 2

Table 1.8.1: Basic Frequency Table

A frequency histogram representing this data looks like
Experiment with creating your own histogram by inputting your data into

the interactive Sage cell below.
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# This function is used to convert an input string into
separate entries

def g(s): return str(s).replace(',','␣').replace('(','␣
').replace(')','␣').split()

@interact
def _(freq =

input_box("1,1,1,1,2,2,2,3,3,3,3,1,5",label="Enter␣data␣
separated␣by␣commas")):
freq = g(freq)
freq = [int(k) for k in freq]
m = min(freq)
M = max(freq)
bn = M-m+1
histogram( freq , range =[m-1/2,M+1/2], bins = bn,

align="mid", linewidth=2, edgecolor="blue",
color="yellow").show()

Relative Frequency Histograms - In this case, area describes relative fre-
quency. Notice in the interactive cell above that each bar is of width one.
Therefore, frequency = area. In some instances where data may be grouped
the total width of the interval may be different and so the height will need
to be adjusted so that the total area of each bar corresponds to the relative
frequency of that category.

Cummulative Histograms. In these a running total is presented using all
values from the given point and below.
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# This function is used to convert an input string into
separate entries

def g(s): return str(s).replace(',','␣').replace('(','␣
').replace(')','␣').split()

@interact
def _(freq =

input_box("1,1,1,1,2,2,2,3,3,3,3,1,5",label="Enter␣data␣
separated␣by␣commas")):
freq = g(freq)
freq = [int(k) for k in freq]
top = len(freq)
m = min(freq)
M = max(freq)
bn = M-m+1
histogram( freq , range =[m-1/2,M+1/2], cumulative =

"true", bins = bn, align="mid", linewidth=2,
edgecolor="blue", color="yellow").show(ymax=top)

1.8.2 Stem and Leaf Plot

A Stem and Leaf Plot allows you to create a histogram of sorts but maintain
the individual data values. To create one of these plots, you will need to
consider your particular data set and create a two-step sieve for organizing
the set. The first part is to create "stems" that are often associated with the
highest digit(s) of each data value and the "leaves" that are often associated
with the remaining digit(s) of the data value.

Once the data set is broken down into stems and leaves, it is often simple
to sort the leaves under each stem to yield an "ordered Stem and Leaf Plot".
Such as mechanism is a simple two-step procedure that allows you to sort a
data set by hand.

Example 1.8.2 Simple Stem and Leaf Plot. Consider the data points
25, 3, 17, 12, 22, 34, 12, 11, 16, 42, 9, 12, 17. In this case we will consider the
stems to be the tens digits and the leaves to be the ones digits. This gives

Stems Leaves
0 3 9
1 7 2 2 1 6 2 7
2 5 2
3 4
4 2

Table 1.8.3: Stem and Leaf Plot (unordered)

Then, an ordered Stem and Leaf Plot would be
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Stems Leaves
0 3 9
1 1 2 2 2 6 7 7
2 2 5
3 4
4 2

Table 1.8.4: Stem and Leaf Plot (ordered)

Notice, in each case you can extract the original data values by recombining
the stem with a corresponding leaf. Indeed, for these 13 data values the median
should be be 7th in the sorted list or the value in the 10’s stem with leaf 6...that
is, 16. �

Example 1.8.5 Stem and Leaf Plot for State Populations. Using
the state population data above, consider organizing the data but using a
"two-pass sort" where you first roughly break data up into groups based upon
ranges which relate to their first digit(s). In this case, let’s break up into
groups according to populations corresponding to 0-4 million, 5-9 million, 10-
14 million, 15-19, million, 20-24 million, 25-29 million, 30-35 million, and 35-39
million. We can represent these classes by using the stems 0L, 0H, 1L, 1H, 2L,
2H, 3L, and 3H where the L and H represent the one’s digits L in 0, 1, 2, 3, 4
and H in 5, 6, 7, 8, 9. Once we group the data into these smaller groups then
we can write the remaining portion of the number horizontally as leaves (in
this case with one decimal place for all values.) This gives a step-and-leaf plot.
If we additionally sort the data in the leaves then this gives you an ordered
stem-and-leaf plot. For the state population data, the ordered stem-and-leaf
plot is given by Notice how it is easy to now see that most state populations are
relatively small and that there are relatively few states with larger population.
Also, notice that you can use this plot to relatively easily identify minimum,
maximum, and other order statistics. �

1.8.3 Box and Whisker Diagram (Box Plot)

This graphical display identifies the "5-number-summary" associated with the
minimum, quartiles, and the maximum. That is, y1, Q1, Q2, Q3, yn. These
values separate the data roughly into quarters. To distinguish these quarters
connect y1 and Q1 with a straight line (a whisker) and do the same with Q3

and yn. Use a box to connect Q1 with Q2 and the same to connect Q2 with
Q3. Then the boxed areas also identify the IQR.

data <- c (0.6 ,0.6 ,0.6 ,0.7 ,0.7 ,0.8 ,0.9 ,1 ,1.1 ,1.3 ,1.3 ,
1.4 ,1.6 ,1.9 ,1.9 ,2.1 ,2.8 ,2.9 ,2.9 ,3 ,3 ,3.1 ,
3.6 ,3.9 ,3.9 ,4.4 ,4.6 ,4.8 ,4.8 ,5.3 ,5.4 ,5.7 ,
5.9 ,6 ,6.5 ,6.6 ,6.6 ,6.7 ,7 ,8.3 ,8.9 ,9.8 ,9.9 ,
10 ,11.6 ,12.8 ,12.9 ,19.6 ,19.7 ,26.4 ,38.3)
paste("Inter␣Quantile␣Range␣=",IQR(data))
paste("Box␣and␣Whisker␣Diagram␣-␣Box␣Plot):")
boxplot(data , horizontal=TRUE)

Checkpoint 1.8.6 Let’s use a box plot to determine some order statistics.

Consider the following box and whisker plot. Find the indicated values of the
represented data.
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1.8.4 Density Plots

A Density Plot can be created to visually interpret if the variable is close to
normal

library(e1071)
par(mfrow=c(1,2)) # graph into two columns
plot(density(cars$speed), main="Density␣Plot:␣Speed",

ylab="Frequency", sub=paste("Skewness:",
round(e1071:: skewness(cars$speed) ,2)))

www.machinelearningplus.com
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1.9 Summary
Links to the main formulas related to descriptive statistics:Order Statistics

Maximum and Minimum
Percentiles
Quartiles
Deciles
5-number summary
Mean
Median
Midrange
Range
Inter Quartile Range
Variance
Skewness
Kurtosis

1.10 Exercises
Complete the online WebWorK homework set "Computational Measures".
Checkpoint 1.10.1 Create a data set with about 10 elements. For your data
set, compute each of the measures from this chapter and present your data
using a frequency histogram.

Checkpoint 1.10.2 Find a "real-world" data set (similar perhaps to the Cen-
sus data presented above.) Compute each of the measures from this chapter.
Interpret and present your conclusions in an electronic report which can include
an excel spreadsheet.
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Chapter 2

Regression

2.1 Introduction
When computing means, medians, variances, etc. in the previous chapter, you
took given data and create measures that in some sense describe the data us-
ing a single value. These single values can be called "descriptive statistics" or
perhaps "point estimates" that help understand the properties of the original
data set. In this chapter, you will instead take a data set and create a mathe-
matical model that can be used to predict or infer properties of the underlying
problem. Statistical procedures such as in this chapter that are used to predict
are often lumped into the world of "inferential statistics".

So, given a set of data points (x0, y0), (x1, y1), ...(xn, yn), it is often desirable
to have a nice continuous formula y = f(x) that expresses the general nature
of those data points. Such a formula "interpolates" the data points if

yk = f(xk),

that is the formula gives a graph that exactly passes through each of the given
data points.

On the other hand, sometimes the data points are known to be only ap-
proximate or the complexity of the formula needed to interpolate all of the
data points exactly is too large. In this case, the formula may only be required
to return values that are relatively close to the data points. Such a formula is
said to "approximate" and gives

yk ≈ f(xk).

Let’s consider ways to create useful models that approximate the data points.
From basic algebra, if you are given two distinct points then there is one

line which passes exactly through (i.e. interpolates) both. There are many
ways to create this linear model but for points (x0, y0), (x1, y1),

y =
y1 − y0

x1 − x0
(x− x0) + y0

is the linear function which passes through both points if the x-values are
distinct. If the x’s are equal then

x = x0

is linear and interpolates both data points. However, once you collect three or
more points it is likely that there is no line which exactly "interpolates" all of

23
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the points. If we desire a linear model then we must settle for a model that
approximates. In this chapter, you will investigate how to create polynomial
functions which in some manner approximate a collection of data point in some
"best" manner.

2.2 Linear Regression - Best Fit Line

In the next few sections, we will presume only one independent variable x and
one dependent variable y. Toward that end, consider a collection of data points

(x0, y0), (x1, y1), ..., (xn, yn)

and a general linear function

f(x) = mx+ b.

It is possible but generally unlikely that each of the given data points will
be interpolated exactly by the linear function. However, you may notice that
the data points exhibit a linear tendency or that the underlying physics might
suggest a linear model. A "scatter plot" of a example data set is created in teh
interactive cell below and the provided data appears to indicate a linear trend.
In general, if this is the case then you may find it easier to predict values of y
for given values of x using a linear approximation. That is why this method
for doing so is also often called a "best-fit line".

var('x')
@interact
def _(Points = input_box ([(-1,1) ,(3,2) ,(4,3) ,(6,4)])):

G = points(Points ,size =20)
G.show(title = "Scatter␣Plot")

But why even bother creating a formula (a line here) to approximate data
that does not satisfy that formula? Remember that you would expect collected
data to vary slightly as one repeatedly collects that data in the same way that
you would expect to make a slightly different score on repeated attempts at
exams on the same material. Creating a formula that is close to your data
gives a well-defined way to predict a y value for a given x value. This predictive
behavior is illustrated in the exercise below.
Checkpoint 2.2.1 WebWork - Using an approximating line. An airline
has determined that the relationship between the number of passengers on a
flight and the total weight of luggage stored in the baggage compartment can
be estimated by the least squares regression equation

y = 127 + 28x.

Predict the weight of luggage for a flight with 121 passengers.
Answer: pounds
Solution. Since x represents weight, choose x = 121 and evaluate the line at
that value to get the estimated total luggage weight to be

y = 127 + 28(121) = 3515

To determine this best-fit line, you need to determine what is meant by
the word "best". For linear regression, to reach this goal consider the total of
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all vertical deviations between the desired line and the provided data points.
Indeed, this vertical error would be of the form

ek = f(xk)− yk

and would be zero if f(x) exactly interpolated at the given data point. Note,
some of these errors will be positive and some will be negative. To avoid
any possible cancellation of errors, we could consider taking absolute values
(which is tough to deal with algebraically) or perhaps squaring the errors.
This second option is the standard approach. This approach is similar to the
approach taken earlier when developing formulas for the variance.

The best-fit line therefore will be the line f(x) = mx+ b so that the "total
squared error" is minimized. This total squared error is given by

TSE(m, b) =

n∑
k=1

e2
k =

n∑
k=1

(f(xk)− yk)2 =

n∑
k=1

(mxk + b− yk)2.

For the following interactive cell, consider for the given data points various
values for the slope and y-intercept and see if you can make the total squared
error as small as possible. In doing so, notice the vertical distances from the
line to the given data points generally decreases as this error measure gets
smaller.

var('x')
@interact
def _(Points = input_box ([(-1,1) ,(3,1) ,(4,3) ,(6,4)]), m =

slider (-4,4,1/50,1),b = slider (-2,2,1/50,1)):
G = points(Points ,size =20)
xpt = []
ypt = []
f = m*x + b
TSE = 0
for k in range(len(Points)):

x0 = Points[k][0]
xpt.append(x0)
y0 = Points[k][1]
ypt.append(y0)
TSE += (f(x=x0) - y0)^2
G += line ([(x0,f(x=x0)),(x0,y0)],color='orange ')

G += plot(f,x,min(xpt) -0.2,max(xpt)+0.2, color='gray')
T = 'Total␣Squared␣Error␣=␣$%s$'%str(n(TSE))
G.show(title = T)

Checkpoint 2.2.2 Non-functional data. Experiment in the interactive
cell above using exactly two data points that have the same x-value. Such as
(1,1) and (1,2). Next, add some additional data points in the same general
vicinity as your original two points. What is the effect to your best-fit line of
adding non-functional points?

So that we don’t have to guess the best values for slope and intercept, we
can appeal to calculus. Indeed, to minimize this function of the two variables
m and b take partial derivatives and set them equal to zero to get the critical
values:

TSEm =

n∑
k=1

2(mxk + b− yk) · xk
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and

TSEb =

n∑
k=1

2(mxk + b− yk) · 1.

Setting each of these equations equal to zero (using calculus!) and solving gives
what is known as the "normal equations":

m

n∑
k=1

x2
k + b

n∑
k=1

xk =

n∑
k=1

xkyk

and

m

n∑
k=1

xk + b

n∑
k=1

1 =

n∑
k=1

yk.

Notice that these normal equations are a linear system of equations and (among
perhaps other reasons) is why this is called linear regression. Solving these for
m and b gives the best fit line.

So, let’s see how to graph points against the best-fit line using R

x <- c(1, 2, 3, 5, 5, 6)
y <- c(5, 4, 2, 2, 3, 1)
cor(x,y) # correlation coefficient
pts = data.frame(x, y)
plot(pts ,pch = 16, cex = 1.0, col = "blue", main = "Scatter␣

Plot␣vs␣Best -Fit␣Line", xlab = "x", ylab = "y")
# pch = 16 creates solid dots , while cex = 1.5 creates dots

that are 1.5 times bigger than the default.
lm(y ~ x)
abline(lm(y ~ x))

Checkpoint 2.2.3 WebWork. Ok. Let’s see if you can apply this to get a
best fit line.

A study was conducted to detemine whether a the final grade of a student in an
introductory psychology course is linearly related to his or her performance on
the verbal ability test administered before college entrance. The verbal scores
and final grades for 10 students are shown in the table below.

Student Verbal Score x Final Grade y
1 49 60

2 49 54

3 72 89

4 66 75

5 30 40

6 33 36

7 70 82

8 57 68

9 79 95

10 65 79

Find the least squares line.
ŷ = + x
Should the regression be used to predict the final grade of a student with a
verbal score of 100?
answer:
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2.3 Correlation

You can plot points and plot the resulting best-fit line determined in the pre-
vious section but the question remains whether the line is any good. In par-
ticular, the real use of the line often is to subsequently predict y-values for a
given x-value. However, it is very likely that the best-fit line does not even pass
through any of the provided data points. So, how can something that misses
every marker still be considered a good fit. To quantify this, we first need to
discuss a way to measure how two variables might vary with each other.
Definition 2.3.1 Covariance. Given paired (sample) data

(x0, y0), (x1, y1), ..., (xn, yn)

with corresponding means x and y, the covariance is given by

Cov(X,Y ) =

n∑
k=0

(xk − x)(yk − y)/n

and similarly if using population data in which you would use instead the mean
of the x-values µx and the mean of the y-values µy. ♦

Theorem 2.3.2 Alternate Formula for Covariance.

Cov(X,Y ) =

∑n
k=0 xkyk
n

− x · y

Proof.

Cov(X,Y ) =

n∑
k=0

(xk − x)(yk − y)/n

=

n∑
k=0

[xkyk − x · yk − y · xk + x · y] /n.

=

n∑
k=0

xkyk/n− x ·
n∑
k=0

yk/n− y ·
n∑
k=0

xk/n+ x · y

which simplifies to the desired result using the definition of the mean. �

This general definition provides a general measure which is a second order
term (like variance) but also maintains "units". To provide a unit-less metric,
consider the following measure.
Definition 2.3.3 Correlation Coefficient. Given a collection of data
points, the correlation coefficient is given by

r =
Cov(X,Y )

sxsy

where sx is the standard deviation of the x-values only and sy is the standard
deviation of the y-values only. A similar statistics for population data would
instead utilize σx and σy as the respective standard deviations of the x-values
and y-values. ♦

Theorem 2.3.4 Correlation Coefficient for Linear Data. If the points
are colinear with a positive slope then r=1 and if the points are collinear with
a negative slope then r=-1.
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Proof. Assume the data points are colinear with a positive slope. Then the
TSE(m0, b0) = 0 for some m0 and b0. For this line notice that f(xk) = yk
exactly for all data points. It is easy to show then that y = m0x + b0 and
sy = |m0|sx. Therefore,

Cov(X,Y ) =

n∑
k=0

(xk − x)(m0xk + b0 − (m0x+ b0))/n = m0s
2
x

Putting these together gives correlation coefficient

r =
m0s

2
x

sxm0sx
= 1.

A similar proof follows in the second case by noting that m0/|m0| = −1. �

Definition 2.3.5 Coefficient of Determination. Given the correlation
coefficient r, the coefficient of determination is given by

r2.

This measure indicates the percentage of the variation in y that can be ex-
plained by the collection of x values. Note, if r=1 (or r=-1), then the theorem
above indicates that the linear model explains the variability for all of the
y-values. ♦

Checkpoint 2.3.6 WebWork. Interpreting correlation coefficients.

For each problem, select the best response.
(a) A study found a correlation of r = -0.61 between the gender of a worker
and his or her income. You may correctly conclude

� an arithmetic mistake was made. Correlation must be positive.

� women earn more than men on average.

� women earn less than men on average.

� this is incorrect because r makes no sense here.

� None of the above.

(b) For a biology project, you measure the weight in grams and the tail length
in millimeters of a group of mice. The correlation is r = 0.8. If you had
measured tail length in centimeters instead of millimeters, what would be the
correlation? (There are 10 millimeters in a centimeter.)

� 0.8/10 = 0.08

� (0.8)(10) = 8

� 0.8

� None of the above.

Checkpoint 2.3.7 WebWork. Interpreting correlation coefficients.

For each problem, select the best response.
(a) What are all the values that a correlation r can possibly take?

� 0 ≤ r ≤ 1
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� r ≥ 0

� -1 ≤ r ≤ 1

� None of the above.

(b) You have data for many years on the average price of a barrel of oil and the
average retail price of a gallon of unleaded regular gasoline. When you make a
scatterplot, the explanatory variable on the x -axis

� can be either oil price or gasoline price.

� is the price of gasoline.

� is the price of oil.

� None of the above.

(c) In a scatterplot of the average price of a barrel of oil and the average retail
price of a gallon of gasoline, you expect to see

� a positive association.

� a negative association.

� very little association.

� None of the above.

Checkpoint 2.3.8 Correlation equaling 0. Consider the data points
(1,1), (1,2), (2,1), (2,2). Plot these points and consider the nature of the best
fit line. Show using software that the correlation coefficient is zero. Justify
why TSE(m,b) = 1 must be the minimum.

2.4 Higher Degree Linear Regression

Continuing in a similar fashion to the previous section, consider now an ap-
proximation using a quadratic function f(x) = ax2 + bx+ c. In this case, the
total squared error would be of the form

TSE(a, b, c) =

n∑
k=0

(ax2
k + bxk + c− yk)2.

Taking all three partials gives

TSEa =

n∑
k=0

2(ax2
k + bxk + c− yk) · x2

k

TSEb =

n∑
k=0

2(ax2
k + bxk + c− yk) · xk

TSEc =

n∑
k=0

2(ax2
k + bxk + c− yk) · 1.
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Once again, setting equal to zero and solving gives the normal equations for
the best-fit quadratic

a

n∑
k=0

x4
k + b

n∑
k=0

x3
k + c

n∑
k=0

x2
k =

n∑
k=0

x2
kyk

a

n∑
k=0

x3
k + b

n∑
k=0

x2
k + c

n∑
k=0

xk =

n∑
k=0

xkyk

a

n∑
k=0

x2
k + b

n∑
k=0

xk + c

n∑
k=0

1 =

n∑
k=0

yk.

Notice that even though you are creating the best-fit quadratic, to find that
quadratic boils down to solving a (slightly larger) linear system. In other words,
linear regression again. Indeed, we can also approach the derivation of regres-
sion forumulas directly using a linear algebra approach. To do this, consider the
equations generated by plugging in the data points (x0, y0), (x1, y1), ..., (xn, yn)
into the quadratic model. This yields a (likely overdetermined) system of equa-
tions. Appending an error term εk for each equation gives the following matrix
form: 

y0

y1

y2

...

yn

 =


x2

0 x0 1

x2
1 x1 1

x2
2 x2 1

... ... ...

x2
n xn 1

 ·
ab
c

+


ε0
ε1
ε2
...

εn


which in matrix form looks something like

Y = XA+ ε.

Solving for ε and then minimizing εtε yields the same solution as above. In
matrix form, after some work this becomes

A = (XtX)−1XtY

with the matrix A containing the three unknowns a, b, and c.
We can also use Matlab (or the opensource alternative "octave") to compute

this linear algebra for us. The graph here using the sagecell is a text graph and
is very rudimentary but plugging this code into Matlab or a desktop version
of octave should present a very nice graph.

x = [-1 0 1 3 5 5]
y = [5 3 0 -1 3 6]
n = max(size(x));
for k = 1:n

X(k,1) = x(k)^2;
X(k,2) = x(k);
X(k,3) = 1;

end
Y = y';␣␣#␣transpose␣the␣set␣of␣y-values␣to␣be␣a␣column␣

vector
A␣=␣inv(X'*X)*X'*Y;
a␣=␣A(1)
b␣=␣A(2)
c␣=␣A(3)
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u␣=␣min(x):0.1: max(x);␣␣#␣create␣a␣set␣of␣input␣values␣for␣
plotting

v␣=␣a␣*␣u.^2␣+␣b␣*␣u␣+␣c;
plot(x,y,'o',u,v,'.')

Cutting and pasting this code into perhaps http://octave-online.net gives
a nice, non ASCII graph. Below, we do the same thing but using Sage.

var('x')
xpts = vector(RR ,(-1, 0, 1, 3, 5, 5))
ypts = vector(RR ,(5, 3, 0, -1, 3, 6))
ones = vector(RR ,(1, 1, 1, 1, 1, 1))
xpts2 = [] # accumulate the squares
pts = [] # accumulate the (x,y) pairs for plotting

purposes
for k in range(len(xpts)):

xpts2.append(xpts[k]^2)
pts.append ((xpts[k],ypts[k]))

xpts2 = vector(xpts2)

X = matrix(RR ,[xpts2]).stack(xpts).stack(ones).transpose ()
# create X

Y = matrix(RR,ypts).transpose ()
Xt = X.transpose ()
A = (Xt*X).inverse ()*Xt*Y
[a,b,c] = [A[0][0] , A[1][0] , A[2][0]]
f = a*x^2+b*x+c
banner = "The␣quadratic␣interpolant␣is␣given␣by␣

\(%s\)"%str(latex(f))
G = points(pts ,size =20)
H = plot(f,x,min(xpts) -0.2,max(xpts)+0.2, title=banner)
show(G+H)

Checkpoint 2.4.1 Creating a Cubic Linear Regression Interpolant.
Modify the Sage code above to give a best-fit cubic interpolant.
Solution.

var('x')
xpts = vector((-1, 0, 1, 3, 5, 5))
ypts = vector((5, 3, 0, 4, 3, -1))
ones = vector((1, 1, 1, 1, 1, 1))
xpts3 = []
xpts2 = []
pts = []
for k in range(len(xpts)):

xpts3.append(xpts[k]^3)
xpts2.append(xpts[k]^2)
pts.append((xpts[k],ypts[k]))

xpts3 = vector(xpts3)
xpts2 = vector(xpts2)

X = matrix([xpts3]).stack(xpts2).stack(xpts).stack(ones).transpose()
Y = matrix(ypts).transpose()
Xt = X.transpose()

A = (Xt*X).inverse()*Xt*Y
[a,b,c,d] = [A[0][0],A[1][0],A[2][0],A[3][0]]
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f = a*x^3 + b*x^2 + c*x + d
banner = "The cubic interpolant is given by $%s$"%str(latex(f))
G = points(pts,size=20)
H = plot(f,x,min(xpts)-0.2,max(xpts)+0.2,title=banner)
show(G+H)

Checkpoint 2.4.2 WebWork. Doing Cubic Linear Regression...use your
Sage work from above.

In some cases, the best-fitting multiple regression equation is of the form ŷ =
b0 + b1x+ b2x

2 + b3x
3. The graph of such an equation is called a cubic. Using

the data set given below, and letting x1 = x, x2 = x2, and x3 = x3, find the
multiple regression equation for the cubic that best fits the given data.

x −8 −5 −2 −1 4 6 8

y 36.2 14.7 2 −0.9 −19.9 −37.4 −61.7

The equation is ŷ = + x+
x2+ x3.

2.5 Multi-variable Linear Regression

The regression models that we have looked at presumed a single independent
variable. It is much more likely when investigating cause and effect relation-
ships that there are perhaps many independent variables that contribute.

Let’s consider a linear model with two independent variables. Indeed, a
basic two-variable linear model of the form

z = α1x+ α2y + β

can be used to approximate data points

(x0, y0, z0), (x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn).

Using a linear systems approach similar to the previous section by evaluating
at these data points and appending an error term to each equation gives, in
matrix form: 

z0

z1

z2

...

zn

 =


x0 y0 1

x1 y1 1

x2 y2 1

... ... ...

xn yn 1

 ·
α1

α2

β

+


ε0
ε1
ε2
...

εn


where the εk terms are the deviation between the exact data point and the

approximation of that point on some plane. Symbolically

Z = XA+ ε.

If all of the points lie on the same plane (unlikely), then ε = 0. Otherwise, once
again applying a least squares solution approach is the same as minimizing εtε
and eventually gives

A = (XtX)−1XtZ
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in general. Evaluating this with X and Z as above gives the needed coefficients

A =

α1

α2

β


Let’s first see how this is done automatically in R using one of the built-in

data sets

x1 &- c(1, 2, 3, 5, 5)
x2 &- c(1, 1, 2, 2, 3)
y &- c(5, 1, 4, 3, -1)
fit <- lm(y ~ x1+x2, data=(x,y,z))
summary(fit) # basic results
coefficients(fit) # a,b,c, for y = a x1 + b x2 + c x3
fitted(fit) # predicted values
residuals(fit) # errors

A good example of the usefulness and limitations of multi-variate linear
regression is the calculation of the "Heat Index". This measure determines
a measure of discomfort relative to the ambient temperature and the relative
humidity. Indeed, in warm climates a high temperature is more difficult to
bear if the humidity is also high. One reason is that with high humidity the
body is less effective in shedding heat through evaporation of body sweat.

The National Weather Service in 1990 published the following multiple
regression equation for Heat Index (HI) relative to the ambient temperature
(T) and the relative humidity (RH)

H = −42.379 + 2.04901523 · T + 10.14333127 ·R− 0.22475541 · T ·R
− 6.83783 · 10−3 · T 2 − 5.481717 · 10−2 ·R2 + 1.22874 · 10−3 · T 2 ·R
+ 8.5282 · 10−4 · T ·R2 − 1.99 · 10−6 · T 2 ·R2.

Since this model utilizes a linear combination of terms and it’s derivation could
also be generated using a generalization of the linear regression method pre-
sented above. Details on how this equation was determined and other details
are available at https://www.wpc.ncep.noaa.gov/html/heatindexequation.shtml.

@interact
def _(T = (90),R = (95)):

H = -42.379+2.04901523*T+10.14333127*R \
-0.22475541*T*R -6.83783*10^( -3)*T^2 \
-5.481717*10^( -2)*R^2+1.22874*10^( -3)*T^2*R \
+8.5282*10^( -4)*T*R^2 -1.99*10^( -6)*T^2*R^2
print "For␣T␣=␣",T,"␣with␣humidity␣=␣",R,"percent␣,␣Heat␣

Index␣=",H

Below one can compute a table for various ambient Temperature readings
given one value for relative humidity. Notice what happens for a relatively
high humidity and relatively high temperature.

R = 95
for T in range (80 ,121):

H = -42.379+2.04901523*T+10.14333127*R \
-0.22475541*T*R -6.83783*10^( -3)*T^2 \
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-5.481717*10^( -2)*R^2+1.22874*10^( -3)*T^2*R \
+8.5282*10^( -4)*T*R^2 -1.99*10^( -6)*T^2*R^2
print "For␣T␣=␣",T,"␣with␣humidity␣=␣",R,"percent␣,␣Heat␣

Index␣=",H

Indeed, you cannot roast a turkey by simply turning the oven on 120 and
pumping in a lot of humidity since the turkey is not trying to cool itself any-
more. Any discomfort measured on the turkey’s behalf would certainly be
matched by the human since the bird would be a rare bird and remain very
much uncooked. The issue is that this model doesn’t presume the possibility
of 120F and 95

2.6 Summary
Here are the important formulas from this section:Later



Chapter 3

Counting and Combinatorics

3.1 Introduction
One of the earliest applications of mathematics you probably remember is how
you could use number to count things. For many, this is what they think
people do when they do mathematics. In this chapter, we will discover that it
is possible to count items without actually listing them all.
Example 3.1.1 Counting by actually listing out all possibilities.
Consider counting the number of ways one can arrange Peter, Paul, and Mary
with the order important. Listing the possibilities:

• Peter, Paul, Mary

• Peter, Mary, Paul

• Paul, Peter, Mary

• Paul, Mary, Peter

• Mary, Peter, Paul

• Mary, Paul, Peter

So, it is easy to see that these are all of the possible outcomes and that the
total number of such outcomes is 6. What happens however if we add Simone
to the list?

• Simone, Peter, Paul, Mary

• Simone, Peter, Mary, Paul

• Simone, Paul, Peter, Mary

• Simone, Paul, Mary, Peter

• Simone, Mary, Peter, Paul

• Simone, Mary, Paul, Peter

• Peter, Simone, Paul, Mary

• Peter, Simone, Mary, Paul

• Paul, Simone, Peter, Mary

• Paul, Simone, Mary, Peter

35
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• Mary, Simone, Peter, Paul

• Mary, Simone, Paul, Peter

• Peter, Paul, Simone, Mary

• Peter, Mary, Simone, Paul

• Paul, Peter, Simone, Mary

• Paul, Mary, Simone, Peter

• Mary, Peter, Simone, Paul

• Mary, Paul, Simone, Peter

• Peter, Paul, Mary, Simone

• Peter, Mary, Paul, Simone

• Paul, Peter, Mary, Simone

• Paul, Mary, Peter, Simone

• Mary, Peter, Paul, Simone

• Mary, Paul, Peter, Simone

Notice how the list quickly grows when just one more choice is added. This
example illustrates how keeping track of the number of items in a set can quickly
get impossible to manage unless we can use a more mathematical approach that
allows you to count the number of possibilities without having to list them all.
�

3.2 General Counting Principles
Definition 3.2.1 Cardinality. Given a set of elements A, the number of
elements in the set is known as its cardinality and is denoted |A|. If the set
has an infinite number of elements then we set |A| = ∞. ♦

In order to "count without counting" we establish the following founda-
tional principle:
Theorem 3.2.2 Multiplication Principle. Given two successive events A
and B, the number of ways to perform A and then B is |A||B|.

Proof. If either of the events has infinite cardinality, then it is clear that the
number of ways to perform A and then B will also be infinite. So, assume that
both |A| and |B| are finite. In order to count the successive events, enumerate
the elements in each set

A =
{
a1, a2, a3, ..., a|A|

}
B =

{
b1, b2, b3, ..., b|B|

}
and consider the function f(k,j) = (k-1)|B| + j. This function is one-to-one and
onto from the set

{(k, j) : 1 ≤ k ≤ |A|, 1 ≤ j ≤ |B|}

onto

{s : 1 ≤ s ≤ |A||B|} .
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Since this second set has |A| |B| elements then the conclusion follows. coordi-
nates. �

Checkpoint 3.2.3 WebWork. Let’s apply the Multiplication Principle.

A fair 6-sided die is rolled 10 times and the resulting sequence of 10 numbers
is recorded.
How many different sequences are possible?
How many different sequences consist entirely of even numbers?
How many different sequences are possible if the first, third, and fourth numbers
must be the same?
Checkpoint 3.2.4 WebWork.

Find how many positive integers with exactly four decimal digits, that is, pos-
itive integers between 1000 and 9999 inclusive, have the following properties:
(a) are not divisible by either 5 or 7.
(b) are divisible by 5 but not by 7.
(c) are divisible by 7.
(d) are divisible by 5 and by 7.
Definition 3.2.5 Factorial. For any natural number n,

n! = n(n− 1)(n− 2)...3 · 2 · 1

and by convention set 0! = 1. ♦

Example 3.2.6 iPad security code. Consider your ipad’s security. To
unlock the screen suppose you need to enter a four digit pass code. How easy
is it to guess this pass code?
Using the standard 10 digit keypad, we first have two questions to consider?

1. Does the order in which the digits are entered matter?

2. Can you reuse a digit more than once?

For the ipad, if the order does matter and you cannot reuse digits, the number of
possible codes can be determined by considering each digit as a separate event
with four such events in succession providing the right code. By successively
applying the multiplication principle, you find that the number of possible
codes is the number of remaining available digits at each step. Namely, 10 ×
9× 8× 7 = 5040.
On the other hand, if you were allowed to reuse the digits then the number of
possible outcomes would be more since all 10 digits would be available for each
event. Namely, 10× 10× 10× 10 = 10000.
Now, consider how this changes if you can use a 4 or 6 digit passcode. Deter-
mine the number of possible passcodes. �

Example 3.2.7 iPad security code with greasy fingers. Reconsider
your ipad’s security. In this case, you like to eat chocolate bars and have
greasy fingers. When you type in your passcode your fingers leave a residue
over the four numbers pressed. If someone now tries to guess your passcode,
how many possible attempts are necessary?
Since there are only four numbers to pick from with order important, the
number of possible passcodes remaining is 4× 3× 2× 1 = 24 �

Example 3.2.8 National Treasure. In the 2004 movie National Treasure,
Ben and Riley are attempting to guess Abagail’s password to enter the room
with the Declaration. They are able to determine the passphrase to get into
the vault room by doing a scan that detects the buttons pushed (not due to
chocolate but just due to the natural oils on fingers). They notice that the
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buttons pushed include the characters AEFGLORVY.
Assuming these characters are used only once each, how many possible
passphrases are possible?
In this case, the order of the characters matters but all of the characters are
distinct. Since we have 9 characters provided, the we can consider each charac-
ter as an event with the first event as a choice from the 9, the second event as
a choice from the remaining 8, etc. This gives 9× 8× ...× 1 = 362880 possible
passphrases.
Assuming that some of the characters could be used more than once, how many
passphrases need to be considered if the total length of passphrase can be at
most 12 characters?
Notice, in this case you don’t know which characters might be reused and so
the number of possible outcomes will be much larger. What is the answer?
You can break this problem down into distinct cases:

• Using 9 characters: The answer was computed above.

• Using 10 characters: In this case, 1 character can be used twice. To
determine the number of possibilities, let’s first pick which character can
be doubled. There are 9 options for picking that character. Next, if we
consider the two instances of that letter as distinct values then we can
just count the number of ways to arrange unique 10 characters which is
10! However, swapping the two characters (which are actually identical)
would not give a new passphrase. Since these are counted twice, let’s
divide these out to give 10!/2.

• Using 11 characters: In this situation we have two unique options:

◦ One character is used three times and the others just once.
Continuing as in the previous case, 11!/3!.Two characters are used
twice and the others just once.

• Using 12 characters

1. One letter from the nine is used four times and all the others are
used once.

2. One letter is used three times, another letter is used two times, and
the others are used once.

3. Three letters are used twice and the others are used once.

With this large collection of possible outcomes, how are the movie characters
able to determine the correct "VALLEYFORGE" passphrase? �

3.3 Permutations

When counting various outcomes the order of things sometimes matters. When
the order of a set of elements changes we call the second a permutation (or an
arrangement) of the first.
Theorem 3.3.1 Permutations of everything. The number of permuta-
tions of n distinct items is n!

Proof. Notice that if n=1, then there is only 1 item to arrange and that there
is only one possible arrangment.

By induction, assume that any set with n elements has n! arrangments and
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assume that

A = {a1, a2, ..., an, an+1} .

Notice that there are n+1 ways to choose 1 element from A and that in doing
so leaves a set with n elements. Combining the induction hypothesis with the
multiplication principle this gives (n+1)n! = (n+1)! possible outcomes. �

One can interpret successive ordered selections as branching through a
"tree" structure. Indeed, starting with the set A,B,C one may pick any of
the three but then a subsequent selection only has two possibilities for the
next selection and so forth. The tree below illustrates that there are six ways
to order two items from a group of size three.

Going one step further, what about ordering the letters in A, B, C, D? You
can start by picking one of the four letters, say A, and then arranging B, C,
and D. Then, start with B and arrange A, C, and D and so on. This gives:

ABCD, ABDC, ACBD, ACDB, ADBC, ADCB
BACD, BADC, BCAD, BCAB, BDAC, BDCA
CBAD, CBDA, CABD, CADB, CDBA, CDAB
DBCA, DBAC, DCBA, DCAB, DABC, DACB
which is 24 different options or 4! = 4 · 3 · 2 · 1 = 24. This can be viewed

using a tree structure where each decision creates a new branch.
Theorem 3.3.2 Permutations of a subset without replacement. The
number of ways to arrange r items from a set of n distinct items is

nPr =
n!

(n− r)!

This is sometimes denoted also as P(n,r) or Pnr .
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Proof. If r > n or r < 0 then this is not possible and so the result would
be no permuatations. Otherwise, apply the multiplication principle r times
noting that there are n choices for the first selection, n-1 choices for the second
selection, and with n-r+1 choices for the rth selection. This gives

nPr = n(n− 1)...(n− r + 1)

= n(n− 1)...(n− r + 1)
(n− r)!
(n− r)!

=
n(n− 1)...(n− r + 1)(n− r)!

(n− r)!

=
n!

(n− r)!
�

Following the tree idea from above, continue for several steps but then stop
once you have gone r steps in. For example, it is easy to see that 5P2 = 20
using a tree.
Checkpoint 3.3.3 WebWork. Let’s apply the the Permutation formula.

In how many ways can 3 different novels, 4 different mathematics books, and
1 biology book be arranged on a bookshelf if
(a) the books can be arranged in any order?
Answer:
(b) the mathematics books must be together and the novels must be together?
Answer:
(c) the novels must be together but the other books can be arranged in any
order?
Answer:

So, these are simple calculations.
Theorem 3.3.4 Permutations of a subset with replacement. The
number of ways to obtain an arrangement of r choices from a group of size n
is

nr

Proof. Use the multiplication principle r times and see that for each choice
all n objects in the universe remain available. That is,

n · n · n...n = nr �

Theorem 3.3.5 Permutations when not all items are distinguishable
(Multinomial Coefficients). If n items belong to s categories, n1 in first,
n2 in second, ... , ns in the last, the number of ways to pick all is

n!

n1! · n2!...ns!

Proof. Enumerate all of the n data items individually with the n1! identical
values first and the remaining groups in like manner to get the enumerated list

x1,1, ..., x1,n1
, x2,1, ..., x2,n2

, ..., xs,1, ..., xs,n2
,

In this order, there are n1! ways to arrange the first group, n2! ways to ar-
range the second, etc. There are n1! × n2! × ...×s! ways to arrange all of the
categories together with groups in this order but none of those group reorders
does anything since those data values are all the same. Dividing out those
from the n! original permutations of all items leaves one with the multinomial
coefficient. �
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Checkpoint 3.3.6 WebWork. Let’s apply the this new Permutation for-
mula.

How many anagrams can be created from the word ’accommodate’ if the new
words do not need to be meaningful?

Another one bites the dust.

3.4 Combinations
When counting various outcomes sometimes the order of things does not mat-
ter. If so, each unique unordered outcome is called a combination.

Once again, consider the permutations when selecting three letters from A,
B, C, D.

1. • A,B,C

• A,C,B

• B,A,C

• B,C,A

• C,A,B

• C,B,A

2. • A,B,D

• A,D,B

• B,A,D

• B,D,A

• D,A,B

• D,B,A

3. • A,C,D

• A,D,C

• C,A,D

• C,D,A

• D,A,C

• D,C,A

4. • B,C,D

• B,D,C

• C,B,D

• C,D,B

• D,B,C

• D,C,B

Notice how these 24 permutations fall into only four distinct categories if the
order does not matter. Therefore, from a group of size four you can pick an
unordered subset of size three in only 4 ways rather than the original 24.

In general, it would be nice to have a direct formula to determine the
number of such combinations without having to explicitly list them all out.
Theorem 3.4.1 Combinations of a subset without replacement. The
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number of ways to arrange r items from a set of n distinct items is

nCr =
n!

r!(n− r)!

This is sometimes denoted C(n,r) or Cnr or
(
n
r

)
.

Proof. Consider creating a permutation of r objects from a set of size n by
first picking an unordered subset of size r and then counting the number of
ways to order that subset. Using our notation and the multiplication principle,

nPr =n Cr · r!

Dividing by r! gives the result. �

Theorem 3.4.2 Combinations of a subset with replacement. The
number of ways to arrange r items from a set of n distinct items is

n+r−1Cr =

(
n+ r − 1

r

)
=

(r + n− 1)!

r!(n− 1)!

Proof. Label each item in your group in some defined order. Since order
doesn’t matter, as you repeatedly sample r times with replacement you can
always write down your outcomes sorted from low to high placement. Finally,
separate like values by some symbol, say "|", and consider each of the n distinct
objects as indistinct *’s. There will be n-1 of these separators since there will
be n to choose from. For example, if choosing r=6 times from the set a, b, c,
d, then the outcome b, b, a, d, a, b could be collected as a, a, b, b, b, d and
written in our code as **|***||* . Notice that shuffling around the identical *’s
would not change the code (and similarly for the identical |’s) but swapping a
* with a | would be a different outcome. Therefore, we can consider this to be
a multinomial coefficient 3.3.5 and the number of ways to rearrange this code
is

(r + n− 1)!

r!(n− 1)!
. �

Checkpoint 3.4.3 WebWork. Let’s apply the this new Combination foru-
mula.

A standard deck of cards consists of four suits (clubs, diamonds, hearts, and
spades), with each suit containing 13 cards (ace, two through ten, jack, queen,
and king) for a total of 52 cards in all.
How many 7-card hands will consist of exactly 4 hearts and 3 clubs?

Notice that to determine the number of outcomes required you to use the
combination forumula several times and then multiply the results using the
multiplication principle.
Checkpoint 3.4.4 WebWork. Use the new Combination formula again.

A school dance committee is to consist of 2 freshmen, 3 sophomores, 4 juniors,
and 5 seniors. If 6 freshmen, 8 sophomores, 7 juniors, and 8 seniors are eligible
to be on the committee, in how many ways can the committee be chosen?
Your answer is :
Solution. There are

(
6
2

)
ways to choose 2 freshmen for the committee,

(
8
3

)
ways to choose 3 sophomores for the committee,

(
7
4

)
ways to choose 4 juniors

for the committee, and
(

8
5

)
ways to choose 5 seniors for the committee. So by
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the generalized basic principle of counting, there are a total of(
6

2

)
·
(

8

3

)
·
(

7

4

)
·
(

8

5

)
=

6!

2!4!
· 8!

3!5!
· 7!

4!3!
· 8!

5!3!
= 1646400

different possible committees.

Once again, you can see that using the formulas can be easy and also can be
part of a bigger problem pasted together using the multiplication principle.
Example 3.4.5 Ipad Security. Revisiting your ipad’s security, what hap-
pens if the order in which the digits are entered does not matter? If so, then
you would be picking a combination of 4 digits without replacement from a
group of 10 digits. Namely,

10!

4!6!
=

10× 9× 8× 7× 6!

4× 3× 2× 1× 6!

=
10× 9× 8× 7

4× 3× 2× 1

=
5040

24
= 210.

Notice that the total number of options is much smaller when order does not
matter.
Note that if you were allowed to reuse the digits then the number of possible
outcomes would be

13!

4!9!
=

13× 12× 11× 10

4× 3× 2× 1

= 715

which once again is more since numbers are allowed to repeat. �
Definition 3.4.6 Binomial Coefficients. The value nCr is known as the
binomial coefficient. It is denoted by

(
n
r

)
and is read "n choose k". ♦

Binomial coefficients have a number of interesting properties. Many of these
are very useful as well in probability calculations. Several of these properties
are collected below. In particular, these relationships verify that the binomial
coefficients are the values found in Pascal’s Triangle.

@interact
def _(n = slider (1,15,1,5)):

for row in range(n+1):
binoms = sorted(binomial_coefficients(row).items())
given_n = []
for k in range(row+1):

given_n.append(binoms[k][1])
pretty_print('%s'%given_n)

Theorem 3.4.7 Binomial Coefficient Formulas. For n ∈ N,

1.
(
n
0

)
= 1

2.
(
n
n

)
= 1

3.
(
n
1

)
= n

4.
(
n
n−1

)
= n
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5.
(
n
r

)
=
(
n
n−r
)

6.
(
n+1
r+1

)
=
(
n
r

)
+
(
n
r+1

)
Proof.

1.
(
n
0

)
= n!

0!(n−0)! = 1

2.
(
n
n

)
= n!

n!(n−n)! = 1

3.
(
n
1

)
= n!

1!(n−1)! = n

4.
(
n
n−1

)
= n!

(n−1)!(n−(n−1))! = n

5.
(
n
r

)
= n!

r!(n−r)! = n!
(n−r)!(n−(n−r))! =

(
n
n−r
)

6. (
n

r

)
+

(
n

r + 1

)
=

n!

r!(n− r)!
+

n!

(r + 1)!(n− (r + 1))!

= (r + 1)
n!

(r + 1)!(n− r)!
//+ (n− r) n!

(r + 1)!(n− r))!

=
(r + 1)n! + (n− r)n!

(r + 1)!(n− r)!

=
(n+ 1)n!

(r + 1)!((n+ 1)− (r + 1))!

=

(
n+ 1

r + 1

)
�

3.5 Summary
Here are the important results from this chapter:Multiplication Principle 3.2.2

Factorial 3.2.5
Permutations without replacement 3.3.2
Permutations with replacement 3.3.4
Multinomial Coefficients 3.3.5
Combinations without replacement 3.4.1
Combinations with replacement 3.4.2
Binomial Coefficients 3.4.6

3.6 Exercises
Complete the online homework "Counting".

A standard deck of playing cards consists of 52 cards broken up into four
"suits" known as Hearts, Spades, Diamonds, and Clubs. Each suit is broken
up additionally into unique cards with "face values" from 2, 3, 4, 5, 6, 7, 8, 9,
10, Jack, Queen, King, Ace and generally in that order from low to high.

1. Pick two cards without replacement one after the other from this deck
and determine the following number of possible outcomes:

• The number of ways to get an Ace for both cards.
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• The number of ways to get an Ace for only one of the two cards.

• The number of ways to get an Ace on the first draw and a Spade on the
second draw.

2. Pick five cards without replacement one after the other from a newly shuffled
full deck and determine the following number of possible outcomes:

• All cards have different faces

• "A pair". That is, two cards have the same face but the others are from
three other faces.

• "Three of a kind". That is, three cards have the same face but the others
are from two other faces.

• "Two Pair". That is, two cards come from one face, two other cards come
from a common face that is not the same as the first two cards, and the
last card comes from some other face.

• "Full House". That is, three cards have the same face and the other two
come from a common face that is not the same as the first three cards.

• "Four of a Kind". That is, four cards have the same face and the other
card comes from some other face.

• "Flush". That is, the five cards for a sequence in order of adjacent faces
in the original list and from the same suit.

• "Royal Flush". That is, a flush but only with the cards Ace, King, Queen,
Jack, 10.

Completely determine the number of possible passphrases for the National
Treasure example started above. Present your answer in a report form.
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Chapter 4

Probability Theory

4.1 Introduction
Mathematics generally focuses on providing precise answers with absolute cer-
tainty. For example, solving an equation generates specific (and non-varying)
solutions. Statistics on the other hand deals with providing precise answers to
questions when there is uncertainty. It might seem impossible to provide such
precise answers but the focus of this text is to show how that can be done so
long as the questions are properly posed and the answers properly interpreted.

Indeed, people often make claims about being the biggest, best, most often
recommended, etc. One sometimes even believes these claims based upon sub-
jective metrics. In this chapter, we will start by looking at relative frequency
and notice several properties regarding relative frequencies as the number of
trials increases. We will use these examples to motivate a definition for prob-
ability and investigate the resulting consequences of that definition.

4.2 Relative Frequency
When attempting to precisely measure uncertainty one often resorts to exam-
ples or experiments that model the theoretical question of interest. Before we
investigate statistical experiments, we need to create some notation that we
will utilize throughout the rest of this text.

• S = Universal Set or Sample Space Experiment or Outcome Space. This
is the collection of all possiblilities.

• Random Experiment. A random experiment is a repeatable activity that
has more than one possible outcome all of which can be specified in
advance but can not be known in advance with certainty.

• Trial. Performing a Random Experiment one time and measuring the
result.

• A = Event. A collection of outcomes. Generally denoted by an upper
case letter such as A, B, C, etc.

• Success/Failure. When recording the result of a trial, a success for event
A occurs when the outcome lies in A. If not, then the trial was a failure.
There is no qualitative meaning to this term.

• Mutually Exclusive Events. Two events that share no common outcomes.
Also known as disjoint events.

49
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• |A| = Frequency. In a sequence of n events, the frequency is the number
of trials which resulted in a success for event A.

• |A| / n = Relative Frequency. A proportion of successes to total number
of trials.

• Histogram. A bar chart representation of data where area corresponds
to the value being described.

To investigate these terms and to motivate our discussion of probability, con-
sider flipping coins using the interactive cell below. Notice in this case, the
sample space S = { Heads, Tails } and the random experiment consists of flip-
ping a fair coin one time. Each trial results in either a Head or a Tail. Since
we are measuring both Heads and Tails then we will not worry about which is
a success or failure. Further, on each flip the outcomes of Heads or Tails are
mutually exclusive events. We count the frequencies and compute the relative
frequencies for a varying number of trials selected by you as you move the
slider bar. Results are displayed using a histogram.

coin = ["Heads", "Tails"]
@interact
def _(num_rolls = slider ([5..5000] , label="Number␣of␣Flips")):

rolls = [choice(coin) for roll in range(num_rolls)]
show(rolls)
freq = [0,0]
for outcome in rolls:

if (outcome =='Tails '):
freq [0] = freq [0]+1

else:
freq [1] = freq [1]+1

print("\nThe␣frequency␣of␣tails␣=␣"+ str(freq [0]))+"␣
and␣heads␣=␣"+ str(freq [1])+"."

rel = [freq [0]/ num_rolls ,freq [1]/ num_rolls]
print("\nThe␣relative␣frequencies␣for␣Tails␣and␣

Heads:"+str(rel))
show(bar_chart(freq ,axes=False ,ymin =0)) # A

histogram of the results

Question 1: What do you notice as the number of flips increases?
Question 2: Why do you rarely (if ever) get exactly the same number of

Heads and Tails? Would you not "expect" that to happen?
You should have noticed that as the number of flips increases, the relative

frequency of Heads (and Tails) stabilized around 0.5. This makes sense in-
tuitively since there are two options for each individual flip and 1/2 of those
options are Heads while the other 1/2 is Tails.

Let’s try again by doing a random experiment consisting of rolling a single
die one time. Note that the sample space in this case will be the outcomes S
= { 1, 2, 3, 4, 5, 6 }.

@interact
def _(num_rolls = slider ([20..5000] , label='Number␣of␣

rolls '),Number_of_Sides = [4,6,8,12,20]):
die = list ((1.. Number_of_Sides))
rolls = [choice(die) for roll in range(num_rolls)]
show(rolls)
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freq = [rolls.count(outcome) for outcome in
set(die)] # count the numbers for each outcome

print 'The␣frequencies␣of␣each␣outcome␣is␣'+str(freq)

print 'The␣relative␣frequencies␣of␣each␣outcome:'
rel_freq = [freq[outcome -1]/ num_rolls for outcome in

set(die)] # make frequencies relative
print rel_freq
fs = []
for f in rel_freq:

fs.append(f.n(digits =4))
print fs
show(bar_chart(freq ,axes=False ,ymin =0))

Notice for a single die there are a larger number of options (for example 6
on a regular die) but once again the relative frequencies of each outcome was
close to 1/n (i.e. 1/6 for the regular die) as the number of rolls increased.

In general, this suggests a rule: if there are n outcomes and each one has the
same chance of occurring on a given trial then on average on a large number
of trials the relative frequency of that outcome is 1/n. In general, if a number
of outcomes are "equally likely" then this is a good model for measuring the
proportion of outcomes that would be expected to have any given outcome.
However, it is not always true that outcomes are equally likely. Consider rolling
two die and measuring their sum:

@interact
def _(num_rolls = slider ([20..5000] , label='Number␣of␣

rolls '),num_sides = slider (4,20,1,6,label='Number␣of␣
sides ')):
die = list ((1.. num_sides))
dice = list ((2.. num_sides *2))
rolls = [( choice(die),choice(die)) for roll in

range(num_rolls)]
sums = [sum(rolls[roll]) for roll in range(num_rolls)]
show(rolls)

freq = [sums.count(outcome) for outcome in set(dice)] #
count the numbers for each outcome

print 'The␣frequencies␣of␣each␣outcome␣is␣'+str(freq)

print 'The␣relative␣frequencies␣of␣each␣outcome:'
rel_freq = [freq[outcome -2]/ num_rolls for outcome in

set(dice)] # make frequencies relative
print rel_freq
show(bar_chart(freq ,axes=False ,ymin =0)) # A

histogram of the results
print "Relative␣Frequence␣of␣",dice[0],"␣is␣about␣

",rel_freq [0].n(digits =4)
print "Relative␣Frequence␣of␣",dice[num_sides -1],"␣is␣

about␣",rel_freq[num_sides -1].n(digits =4)

Question 1: What do you notice as the number of rolls increases?
Question 2: What do you expect for the relative frequencies and why are

they not all exactly the same?
Notice, not only are the answers not the same but they are not even close.

To understand why this is different from the examples before, consider the
possible outcomes from each pair of die. Since we are measuring the sum of
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the dice then (for a pair of standard 6-sided dice) the possible sums are from
2 to 12. However, there is only one way to get a 2–namely from a (1,1) pair–
while there are 6 ways to get a 7–namely from the pairs (1,6), (2,5), (3,4), (4,3),
(5,2), and (6,1). So it might make some sense that the likelihood of getting a 7
is 6 times larger than that of getting a 2. Check to see if that is the case with
your experiment above.

Play with the following several times to investigate what you might expect
to get when you repeatedly receive a "hand" of 5 standard playing cards.
Can you imagine how you might possible enumerate the entire list of possible
outcomes by hand? However, using this interactive cell, you can shuffle and
deal 5-card hands over and over easily and then count the number of special
poker outcomes.

var('A␣C␣D␣H␣J␣K␣Q␣S')

suits = [S, D, C, H]
values = [2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A]

full_deck = [(value , suit) for suit in suits for value in
values]

@interact
def _(num_hands=slider [50..5000]): # Set up

the number of hands to create
hands= [] # Start with a blank list.
for i in range(num_hands): # This loops the following

operation num_hands times.
deck = copy(full_deck) # start over
shuffle(deck)
hands.append ([deck.pop() for card in range (5)])

freq_values = []
one_pair = 0
two_pair = 0
three_kind = 0
full_house = 0
four_kind = 0
for i in range(num_hands):

hand = hands[i]
hand_values = [hand[k][0] for k in range (5)]
freq_values = [hand_values.count(value) for value in

set(values)]
freq_values.sort(reverse=True)
if freq_values [0]==4:

four_kind=four_kind +1
if freq_values [0]==3:

if freq_values [1]==2:
full_house=full_house +1

if freq_values [1]==1:
three_kind=three_kind +1

if freq_values [0]==2:
if freq_values [1]==2:

two_pair=two_pair +1
if freq_values [1]==1:

one_pair=one_pair +1
print "␣␣␣␣␣␣␣One␣Pair␣frequency␣=␣",one_pair ,"␣with␣

relative␣frequency␣",one_pair/num_hands
print "␣␣␣␣␣␣␣Two␣Pair␣frequency␣=␣",two_pair ,"␣with␣

relative␣frequency␣",two_pair/num_hands
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print "Three␣of␣a␣Kind␣frequency␣=␣",three_kind ,"␣with␣
relative␣frequency␣",three_kind/num_hands

print "␣␣␣␣␣Full␣House␣frequency␣=␣",full_house ,"␣with␣
relative␣frequency␣",full_house/num_hands

print "␣Four␣of␣a␣Kind␣frequency␣=␣",four_kind ,"␣with␣
relative␣frequency␣",four_kind/num_hands

Sometimes you will find it useful to keep a running total of the relative
frequencies. Such a cumulative approach is often called a distribution function.
Definition 4.2.1 Cumulative relative frequency. For a collection of
ordered events x1 < x2 < ... < xs with corresponding frequencies f1, f2, ..., fs,
the cumulative relative frequency is the function

F (x) =
∑
xk≤x

fxk

♦

Let’s consider the cumulative relative frequency with the sum of dice ex-
ample seen at the beginning of this chapter.

@interact
def _(num_rolls = slider ([20..5000] , label='Number␣of␣

rolls '),num_sides = slider (4,20,1,6,label='Number␣of␣
sides ')):
die = list ((1.. num_sides))
dice = list ((2.. num_sides *2))
rolls = [( choice(die),choice(die)) for roll in

range(num_rolls)]
sums = [sum(rolls[roll]) for roll in range(num_rolls)]
show(rolls)

freq = [sums.count(outcome) for outcome in set(dice)] #
count the numbers for each outcome

n = len(freq)
CF = freq
for k in range(1,n):

CF[k] = freq[k] + CF[k-1]

print 'The␣cumulative␣relative␣frequencies␣of␣each␣
outcome:'

Crel_freq = [CF[outcome -2]/ num_rolls for outcome in
set(dice)] # make frequencies relative

print Crel_freq
show(bar_chart(CF,axes=False ,ymin =0)) # A histogram

of the results
print "Cumulative␣Relative␣Frequence␣of␣",dice[0],"␣is␣

about␣",Crel_freq [0].n(digits =4)
print "Cumulative␣Relative␣Frequence␣of␣

",dice[num_sides -1],"␣is␣about␣
",Crel_freq[num_sides -1].n(digits =4)

4.3 Definition of Probability
Relative frequency gives a way to measure the proportion of "successful" out-
comes when doing an experimental approach. From the interactive applications
above, it appears that the relative frequency does jump around as the exper-
iment is repeated but that the amount of variation decreases as the number
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of experiments increases. This is known to be true in general and is known as
the "Law of Large Numbers".

We would like to formalize what these relative frequencies are approaching
and will call this theoretical limit the "probability" of the outcome. In doing
so, we will do our best to model our definition so that it follow the behavior of
relative frequency.

To generate a general definition for probability, we need to know what is
is that we measuring. In general, we will be finding the probability of sets of
possible outcomes...that is, a subset of the Sample Space S. Toward that end,
it is important to briefly look at some properties of sets.
Definition 4.3.1 Pairwise Disjoint Sets. {A1, A2, ..., An} are pairwise
disjoint provided Ak ∩ Aj = ∅ so long as k 6= j. Disjoint sets as also often
called mutually exclusive. ♦

Play around with the interactive cell below by adding and removing items
in each of the three sets. Find elements so that the intersection of all three
sets is empty but at least one of the paired sets are not disjoint. See if you can
make all of the paired sets not disjoint but the intersection of all three disjoint.
This is why we need to consider "pairwise" disjoint sets.

def f(s, braces=True):
t = ',␣'.join(sorted(list(s)))
if braces: return '{' + t + '}'
return t

def g(s): return set(str(s).replace(',','␣').split())

@interact
def _(X='1,2,3', Y='2,a,3,4,apple', Z='a,b,10,apple '):

S = [g(X), g(Y), g(Z)]
X,Y,Z = S
XY = X & Y
XZ = X & Z
YZ = Y & Z
XYZ = XY & Z

Txy = "␣-␣NOT␣disjoint␣"
if Set(XY).is_empty ():

Txy = '␣-␣disjoint␣'
pretty_print(html("$X␣\cap␣Y$␣=␣%s"%f(XY)+"%s"%Txy))
Txz = "␣-␣NOT␣disjoint␣"
if Set(XZ).is_empty ():

Txz = '␣-␣disjoint␣'
pretty_print(html("$X␣\cap␣Z$␣=␣%s"%f(XZ)+"%s"%Txz))
Tyz = "␣-␣NOT␣disjoint␣"
if Set(YZ).is_empty ():

Tyz = '␣-␣disjoint␣'
pretty_print(html("$Y␣\cap␣Z$␣=␣%s"%f(YZ)+"%s"%Tyz))
Txyz = "␣-␣NOT␣disjoint␣"
if Set(XYZ).is_empty ():

Txyz = '␣-␣disjoint␣'
pretty_print(html("$X␣\cap␣Y␣\cap␣Z$␣=␣

%s"%f(XYZ)+"%s"%Txyz))
centers = [(cos(n*2*pi/3), sin(n*2*pi/3)) for n in

[0,1,2]]
scale = 1.7
clr = ['yellow ', 'blue', 'green ']
G = Graphics ()
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for i in range(len(S)):
G += circle(centers[i], scale , rgbcolor=clr[i],

fill=True , alpha =0.3)
for i in range(len(S)):

G += circle(centers[i], scale , rgbcolor='black ')

# Plot what is in one but neither other
for i in range(len(S)):

Z = set(S[i])
for j in range(1,len(S)):

Z = Z.difference(S[(i+j)%3])
G += text(f(Z,braces=False),

(1.5* centers[i][0] ,1.7* centers[i][1]),
rgbcolor='black ')

# Plot pairs of intersections
for i in range(len(S)):

Z = (set(S[i]) & S[(i+1) %3]) - set(XYZ)
C = (1.3* cos(i*2*pi/3 + pi/3), 1.3* sin(i*2*pi/3 +

pi/3))
G += text(f(Z,braces=False), C, rgbcolor='black ')

# Plot intersection of all three
G += text(f(XYZ ,braces=False), (0,0), rgbcolor='black ')

# Show it
G.show(aspect_ratio =1, axes=False)

Consider how we might create a definition for the expectation of a given
outcome. To do so, first consider a desired collection of outcomes A. If each
outcome in A is chosen randomly then we might consider using a formula
similar to relative frequency and set a measure of expectation to be |A|/|S|.
For example, on a standard 6-sided die, the expectation of the outcome A=2
from the collection S = 1,2,3,4,5,6 could be |A|/|S| = 1/6.

From our example where we take the sum of two die, the outcome A = {
4,5 } from the collection S = 2,3,4,...,12 would be

|A| = |{(1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1)}| = 7

|S| = |{(1, 1), ..., (1, 6), (2, 1), ..., (2, 6), ..., (6, 1), ..., (6, 6)}| = 36

and so the expected relative frequency would be |A|/|S| = 7/36. Compare
this theoretical value with the sum of the two outcomes from your experiment
above.

We are ready to now formally give a name to the theoretical measure of
expectation for outcomes from an experiment. Taking our cue from our ex-
amples, let’s make our definition agree with the following relative frequency
properties:

1. Relative frequency cannot be negative, since cardinality cannot be nega-
tive

2. Relative frequencies for disjoint events should sum to one

3. Relative frequencies for collections of disjoint outcomes should equal the
sum of the individual relative frequencies

which leads us to the following formal definition...
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Definition 4.3.2 Probability. The probability P(A) of a given outcome A
is a set function that satisfies:

1. (Nonnegativity) P(A) ≥ 0

2. (Totality) P(S) = 1

3. (Subadditivity) If A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B). In general,
if Ak are pairwise disjoint then P (∪kAk) =

∑
k P (Ak).

♦

Checkpoint 4.3.3 Using the definition above, determine the following prob-
abilities.

Suppose you select a letter at random from the word MISSISSIPPI.
The probability of selecting the letter S is
The probability of selecting the letter M is
The probability of selecting the letters P or I is
The probability of not selecting the letter I is
Hint. Count the number of letters in the word. When computing each prob-
ability, this is the number that goes on the bottom.
Solution. The probability of ’M’s is 1/11.
The probability of ’I’s is 4/11.
The probability of ’S’s is 4/11.
The probability of ’P’s is 2/11.

Notice when you are given complete information regarding the entire data set
then determining probabilities for events can be relatively easy to compute.

Based upon this definition we can immediately establish a number of results.
Theorem 4.3.4 Probability of Complements. P (A) + P (Ac) = 1

Proof. Let A be any event and note that

A ∩Ac = ∅.

But A ∪Ac = S. So, by subadditivity

1 = P (S) = P (A ∪Ac) = P (A) + P (Ac)

as desired. �

Theorem 4.3.5 P (∅) = 0

Proof. Note that ∅c = S. So, by the theorem above,

1 = P (S) + P (∅)⇒ 1 = 1 + P (∅).

Cancelling the 1 on both sides gives P (∅) = 0. �

Theorem 4.3.6 A ⊂ B,P (A) ≤ P (B)

Proof. Assume sets A and B satisfy A ⊂ B. Then, notice that

A ∩ (B −A) = ∅

and
B = A ∪ (B −A).
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Therefore, by subadditivity and nonnegativity

0 ≤ P (B −A)

P (A) ≤ P (A) + P (B −A)

P (A) ≤ P (B) �

Theorem 4.3.7 P (A) ≤ 1

Proof. Notice A ⊂ S. By the theorem above P (A) ≤ P (S) = 1 �

Theorem 4.3.8 P (A ∪B) = P (A) + P (B)− P (A ∩B)

Proof. Notice that we can write A ∪B as the disjoint union

A ∪B = (A−B) ∪ (A ∩B) ∪ (B −A).

We can also write disjointly

A = (A−B) ∪ (A ∩B)

B = (A ∩B) ∪ (B −A)

Hence,

P (A) + P (B)− P (A ∩B)

= [P (A−B) + P (A ∩B)]

+ [P (A ∩B) + P (B −A)]− P (A ∩B)

= P (A−B) + P (A ∩B) + P (B −A)

= P (A ∪B) �

This result can be extended to more that two sets using a property known
as inclusion-exclusion. The following two theorems illustrate this property and
are presented without proof.
Corollary 4.3.9 For any sets A, B and C,

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C)

+ P (A ∩B ∩ C)

Corollary 4.3.10 For any sets A, B, C and D,

P (A ∪B ∪ C ∪D) = P (A) + P (B) + P (C) + P (D)

− P (A ∩B)− P (A ∩ C)− P (A ∩D)

− P (B ∩ C)− P (B ∩D)− P (C ∩D)

+ P (A ∩B ∩ C) + P (A ∩B ∩D)

+ P (A ∩ C ∩D) + P (B ∩ C ∩D)

− P (A ∩B ∩ C ∩D)

Many times, you will be dealing with making selections from a sample space
where each item in the space has an equal chance of being selected. This may
happen (for example) when items in the sample space are of equal size or when
selecting a card from a completely shuffled deck or when coins are flipped or
when a normal fair die is rolled.

It is important to notice that not all outcomes are equally likely–even in
times when there are only two of them. Indeed, it is generally not an equally
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likely situation when picking the winner of a football game which pits, say, the
New Orleans Saints professional football team with the New Orleans Home
School Saints. Even though there are only two options the probability of the
professional team winning in most years ought to be much greater than the
chances that the high school will prevail.

When items are equally likely (sometimes also called "randomly selected")
then each individual event has the same chance of being selected as any other.
In this instance, determining the probability of a collection of outcomes is
relatively simple.
Theorem 4.3.11 Probability of Equally Likely Events. If outcomes in
S are equally likely, then for A ⊂ S,

P (A) =
|A|
|S|

.

Proof. Enumerate S = x1, x2, ..., x|S| and note P ({xk}) = c for some constant
c since each item is equally likely. However, using each outcome as a disjoint
event and the definition of probability,

1 = P (S) = P ({x1} ∪ {x2} ∪ ... ∪ {x|S|})
= P ({x1}) + P ({x2}) + ...+ P ({x|S|})
= c+ c+ ...+ c = |S| × c

and so c = 1
|S| . Therefore, P ({xk}) = 1

|S| .
Hence, with A = a1, a2, ..., a|A|, breaking up the disjoint probabilities as

above gives

P (A) = P ({a1} ∪ {a2} ∪ ... ∪ {a|A|})
= P ({a1}) + P ({a2}) + ...+ P ({a|A|})

=
1

|S|
+

1

|S|
+ ...+

1

|S|

=
|A|
|S|

as desired. �

var('A␣C␣D␣H␣J␣K␣Q␣S')

def L(str):
n = len(str)
m = int(n/5)
top = m+1
if m == n/5:

top = m
for k in range(top):

print str[5*k:5*k+5]

suits = [S, D, C, H]
values = [2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A]

deck = [(value , suit) for suit in suits for value in values]
full_deck = copy(deck) # to save a copy of the original

deck for later use.
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L(deck)
shuffle(deck)
L(deck)
deck1 = copy(full_deck)
shuffle(deck1)

@interact
def _(auto_update=False):

global deck1
shuffle(deck1)
if (Set(deck1).cardinality () <5):

print 'Deck␣is␣too␣small ... getting␣a␣new␣deck'
deck1 = copy(full_deck)

else:
hand = [deck1.pop() for card in range (5)]
print "The␣cards␣dealt:"
L(hand)
print
print "␣The␣remaining␣cards␣in␣the␣deck:"
L(deck1)
print
print(html("\n␣The␣number␣of␣remaining␣cards␣in␣the␣

deck␣=␣%s"%str(Set(deck1).cardinality ())))

Checkpoint 4.3.12 WebWork. Let’s see if you understand the relationship
between frequency and relative frequency. In this exercise, presume "Probabi-
ity" to be the expected fraction of outcomes you might logically expect.

A fun size bag of M
ampMs has about 18 candies. You open one of the bags and discover:
3 Blues, 4 Yellows, 5 Browns, 2 Reds and 4 Greens.
The probability of choosing a brown is .
The odds in favor of choosing a yellow is
The probability of choosing either a blue or a red is
The odds against a green being chosen is
Hint. Odds in favor of an event = number of favorable outcomes / number
of unfavorable outcomes.
Odds against an event = number of unfavorable outcomes / number of favorable
outcomes.

So, these are simple calculations.

Checkpoint 4.3.13 WebWork. This one is a little harder and uses the
binomial coefficients from Combinatorics.

(a) Count the number of ways to arrange a sample of 5 elements from a
population of 10 elements. NOTE: Order is not important.
answer:
(b) If random sampling is to be employed, the probability that any particular
sample will be selected is

Notice how the probabilities look similar to relative frequencies. It’s just the
case that you are counting ALL of the individual simple possibilities that lead
to a success.
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4.4 Exercises

Checkpoint 4.4.1 Poker. Determine the probabilities associated with the
various 5-card hands. That is

1. P(one pair)

2. P(two pair)

3. P(three of a kind)

4. P(full house)

5. P(four of a kind

6. P(straight)

7. P(flush)

8. P(royal flush)

Checkpoint 4.4.2 Dice. Determine the 36 possible outcomes related to the
rolling a pair of fair dice. Justify why each of these outcomes is equally likely.
Determine the probabilities associated with each possible sum.
Solution. Remember, when using equally likely outcomes |A|/|S| assumes
that the items counted for A are also in the sample space S. In this case, for
example, to determine the Probability of getting a sum of (say) 4 includes
the rolls (1,3), (2,2), and (3,1). These three "successes" from the 36 possible
ordered pairs gives P(4) = 3/36. Similarly, P(5) = |dice rolls with a sum of
5|/36 = |(1,4), (2,3), (3,2), (4,1)| / 36 = 4/36. Continue in this manner to
determine the other possibilities and then compare to the experimental sage
cell seen earlier for the sum of two dice .

Checkpoint 4.4.3 Skew Dice. Suppose you have one die which only has
three possible sides labeled 1, 2, or 3. Suppose a second die has twelve equally
likely sides with labels 1,2,3,4,4,5,5,6,6,7,8,9. Justify that the probabilities
associate with each possible sum is the same as the probabilities when using
two normal 6-sided dice.
Solution. Consider the outcome space

S = (1, 1), (1, 2), (1, 3), (1, 4), (1, 4), (1, 5), (1, 5), (1, 6), (1, 6), (1, 7), (1, 8), (1, 9), (2, 1)...(3, 9)

Then P(5) = |(1,4), (1,4), (2,3), (3,2) |/36 = 4/36. Compare this to the
exercise with regular dice performed above. Similarly, compute the remaining
probabilities.

Checkpoint 4.4.4 Craps. Analyze the dice game known as "craps": Roll
a pair of dice and consider the sum. If that sum is 7 or 11, the one who rolls
wins and can roll again. If the sum is 2, 3, or 12 – known as craps – the one
who rolls loses but keeps the dice. For any other outcome (called the "point"),
the one who rolls continues hoping to roll the point value again before rolling a
7. If successful, then the roller wins and starts the game anew. If a 7 appears
first, the roller loses and the next person gets to be the roller.
So, a win can be obtained in two ways: 7 or 11 on first roll or getting the point
before the 7 thereafter. Therefore, determine the probability of a win and the
probability of a loss.
Solution. "craps".

http://mathworld.wolfram.com/Craps.html
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4.5 Conditional Probability

When finding the probability of an event, sometimes you may need to consider
past history and how it might affect things. Indeed, you might think that when
the local station forecasts rain then the probability of it actually raining should
be greater than if they forecast fair skies. At least that is the hope. :) In this
section, you will develop a way to deal with the probability of some event that
might change dependent upon the occurence or not of some other event.Indeed,
consider what happens when you keep on dealing a hand of five cards from a
shuffled deck but without replacement. Notice how the probability of the same
thing (such as P(getting a Heart on the next card)) oscillates based upon what
cards came out of the deck on previous hands.

print "Conditional␣Events␣-␣successively␣deal␣5␣cards␣w/o␣
replacement"

var('Ace␣Clubs␣Diamonds␣Hearts␣Jack␣King␣Queen␣Spades ')

suits = [Spades , Diamonds , Clubs , Hearts]
values = [2, 3, 4, 5, 6, 7, 8, 9, 10, Jack , Queen , King , Ace]

deck = [(value , suit) for suit in suits for value in values]
full_deck = copy(deck) # to save a copy of the original

deck for later use.

deck1 = copy(full_deck)
history1 =[]
@interact
def _(choice =['Hearts ','Spades ','Diamonds ','Clubs ','New␣

Deck'],again=['Repeat␣Same␣Suit']):
global deck1 , history1
shuffle(deck1)
if choice =='Hearts ':

suit = Hearts
elif choice =='Spades ':

suit = Spades
elif choice =='Diamonds ':

suit = Diamonds
elif choice =='Clubs ':

suit = Clubs
else:

deck1 = copy(full_deck)
shuffle(deck1)
history1 =[]

if (Set(deck1).cardinality () <5):
print "Deck␣is␣too␣small ...get␣a␣new␣deck"

elif choice <>'New␣Deck':
hand = [deck1.pop() for card in range (5)]
print "Click␣on␣a␣desired␣suit␣above␣to␣deal␣out␣

another␣5␣card␣hand.␣␣The␣cards␣dealt:"
print hand
print "The␣remaining␣cards␣in␣the␣deck:"
print deck1
num = Set(deck1).cardinality ()
print "\nThe␣number␣of␣remaining␣cards␣in␣the␣deck␣=␣

%s"%str(num)
looking = []
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for card in deck1:
if card [1]== suit:

looking.append(card)
prob = float(Set(looking).cardinality ())/num
history1.append(prob)

print 'So,␣the␣remaining␣probability␣of␣getting␣a␣
card␣from␣'+choice+'␣from␣the␣remaining␣cards␣is␣
%s'%str(prob)

list_plot(history1).show(xmin=0,xmax=9,ymin=0,ymax=1,figsize =(5,2))

Now, consider the case when you put the cards back in, reshuffle, and then
get 5 new cards...

print "Independent␣Events␣-␣Successively␣deal␣5␣cards␣but␣
WITH␣replacement"

var('Ace␣Clubs␣Diamonds␣Hearts␣Jack␣King␣Queen␣Spades ')

suits = [Spades , Diamonds , Clubs , Hearts]
values = [2, 3, 4, 5, 6, 7, 8, 9, 10, Jack , Queen , King , Ace]

deck = [(value , suit) for suit in suits for value in values]
full_deck = copy(deck) # to save a copy of the original

deck for later use.
deck1 = copy(full_deck)

h2=[]
@interact
def

_(choice =['Heart ','Spade ','Diamond ','Club'],again=['Repeat␣
Same␣Suit']):

if choice =='Hearts ':
suit = Hearts

elif choice =='Spades ':
suit = Spades

elif choice =='Diamonds ':
suit = Diamonds

else:
suit = Clubs

deck1 = copy(full_deck)
shuffle(deck1)
hand = [deck1.pop() for card in range (5)]
print "The␣cards␣dealt:"
print hand
print "Replacing␣this␣hand␣and␣reshuffling␣gives␣the␣

remaining␣cards␣in␣the␣deck:"
deck1 = copy(full_deck)
shuffle(deck1)
print(deck1)

num = Set(deck1).cardinality ()
print "\nThe␣number␣of␣remaining␣cards␣in␣the␣deck␣=␣

%s"%str(num)
looking = []
for card in deck1:
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if card [1]== suit:
looking.append(card)

prob = float(Set(looking).cardinality ())/num
h2.append(prob)

print 'So,␣the␣remaining␣probability␣of␣getting␣a␣
'+choice+'␣from␣the␣remaining␣cards␣is␣%s'%str(prob)

list_plot(h2).show(xmin=0,xmax=15,ymin=0,ymax=1,figsize =(5,2))

print 'Independent␣Events␣-␣Successively␣deal␣5␣cards␣
but␣WITH␣replacement '

Changing Sample Space - Balls: Consider a box with three balls: one Red,
one White, and one Blue. Using an equally likely assumption, the probability
of randomly pulling out a Red ball should be 1/3. That is P(Red) = 1/3.
However, suppose that for a first trial you pull out the White ball and set it
aside. Attempting to pull out another ball leaves you with only two options
and so the probability of randomly pulling out a Red ball is 1/2. Notice that
the probability changed for the second trial dependent on the outcome of the
first trial.

Changing Sample Space - Cards: Consider a deck of 52 standard playing
cards and a success occurs when a Heart is selected from the deck. When
extracting one card randomly, the probability of that card being a Heart is
P(Heart) = 13/52. Now, assume that one card has already been extracted
and setaside. Now, prepare to extract another. If the first card drawn was a
Heart, then there are only 12 Hearts left for the second draw. However, if the
first card drawn was not a Heart, then there are 13 Hearts available for the
second draw. To compute this probability correctly, one need to formulate the
question so that subadditivity can be utilized.

Let H1 be the outcome Heart on 1st draw and H2 be the outcome Heart
on 2nd draw. Then,

P (Heart on 2nd draw) = P ([H1 ∩H2] ∪ [Hc
1 ∩H2])

= P (H1 ∩H2) + P (Hc
1 ∩H2)

=
|H1 ∩H2|

|P (Number of ways to get two cards|

+
|Hc

1 ∩H2|
|Number of ways to get two cards|

=
13

52
· 12

51
+

39

52
· 13

51
=

12

4 · 51
+

3 · 13

4 · 51

Definition 4.5.1 Conditional Probability. For sets A and B,

P (B|A) =
P (A ∩B)

P (A)
,

provided P(A)> 0. ♦

You can read P(B|A) as "the probability of B given A".
Theorem 4.5.2 Conditional Probability satisfies all of the requirements of
regular probability.

Proof. By definition, for any event probability must be nonnegative. There-
fore

P (A ∩B) ≥ 0.
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So,

P (B|A) =
positive or zero

positive
≥ 0.

Further,

P (S|A) = P (A ∩ S)/P (A) = P (A)/P (A) = 1.

For the third part, we will only consider the case when there are two disjoint
sets B and C. Then,

P (B ∪ C|A) =
P (A ∩ (B ∪ C)

P (A)

=
P ((A ∩B) ∪ (A ∩ C))

P (A)

=
P (A ∩B)

P (A)
+
P (A ∩ C)

P (A)

= P (B|A) + P (C|A). �

Theorem 4.5.3 Multiplication Rule. For any sets A and B,

P (A ∩B) = P (A)P (B|A) = P (B)P (A|B)

Proof. If P(A)=0 or P(B)=0, then the result is trivial. Otherwise, unravel
the definition of conditional probably by taking the denominator to the other
side. Also note that you can write A ∩B = B ∩A. �

Checkpoint 4.5.4 WebWork. Conditional Probability sometimes makes
you have to think carefully about the ways to get the desired outcome.

A bag contains 6 red marbles and 7 white marbles. Two marbles are drawn in
succession without replacement. Find the probabilities of the following events:
1. The first marble drawn is red and the second is white.
Answer:
2. Both marbles drawn are red.
Answer:

See how you had to break the given question up into two disjoint pieces.

4.6 Bayes Theorem

Conditional probabilities can be computed using the methods developed above
if the appropriate information is available. Some times you will however have
some information available, such as P (A|B) but need P (B|A). The ability
to "play around with history" by switching what has been presumed to occur
leads to an important result known as Baye’s Theorem.
Theorem 4.6.1 Bayes Theorem. Let S = {S1, S2, ..., Sm} where the Sk
are pairwise disjoint and S1 ∪ S2 ∪ ... ∪ Sm = S (i.e. a partition of the space
S). Then for any A ⊂ S

P (Sj |A) =
P (Sj)P (A|Sj)∑m
k=1 P (Sk)P (A|Sk)

.

The conditional probability P (Sj |A) is called the posterior probability of Sk.
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Proof. Notice, by the definition of conditional probability and the multiplica-
tion rule

P (Sj |A) =
P (Sj ∩A)

P (A)
=
P (Sj)P (A|Sj)

P (A)
.

But using the disjointness of the partition

P (A) = P ((A ∩ S1) ∪ (A ∪ S2) ∪ ... ∪ (A ∪ Sm))

= P (A ∩ S1) + P (A ∪ S2) + ...+ P (A ∪ Sm)

= P (S1 ∩A) + P (S2 ∪A) + ...+ P (Sm ∪A)

= P (S1)P (A|S1) + P (S2)P (A|S2) + ...+ P (Sm)P (A|Sm)

=

m∑
k=1

P (Sk)P (A|Sk)

Put these two expansions together to obtain the desired result. �

To illustrate this result, from the web site http://stattrek.com/probability/

bayes-theorem.aspx consider the following problem:
Marie is getting married tomorrow, at an outdoor ceremony in the desert.

In recent years, it has rained only 5 days each year. Unfortunately, the weather-
man has predicted rain for tomorrow. When it actually rains, the weatherman
correctly forecasts rain 90

Notice, all days can be classified into one of two disjoint options:

• Rainy, in which case we can deduce from the given info that P(Rain) =
5/365

• Not Rainy, and since this is the complement of above, P(Not Rain) =
360/365

In the notation of Bayes Theorem, let A represent a forecast of Rain and note
you have

P (Rain) = P (S1) =
5

365

and
P (Not Rain) = P (S2) =

360

365
.

Further, you are given the conditional probabilities

P ( Forecast Rain | Rain) = P (A|S1) = 0.9

P ( Forecast Rain | Not Rain) = P (A|S2) = 0.1

Notice that the question provided requests that you find the probability of Rain
given that the weatherman has forecasted rain. What is given on the other
hand is the reverse of that conditional probability. Using Bayes Theorem allows
you to turn this around...

P (Rain) = P (S1)P (A|S1) + P (S2)P (A|S2)

=
5

365
· 0.9 +

360

365
· 0.1

Hence, putting these together gives

P (Rain | Forecast Rain) =
5

365 · 0.9
5

365 · 0.9 + 360
365 · 0.1

http://stattrek.com/probability/bayes-theorem.aspx
http://stattrek.com/probability/bayes-theorem.aspx
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=
5 · 0.9

5 · 0.9 + 360 · 0.1

=
45

45 + 360
≈ 0.111

So, normally there is only a 5 percent chance of rain on a given day but given
that the weatherman has forecast rain, the chance of rain has risen to a little
more than 11 percent.
Checkpoint 4.6.2 WebWork. Let’s try a Bayes Theorem example...

A biomedical research company produces 50 < percent/ > of its insulin at a
plant in Kansas City, and the remainder is produced at a plant in Jefferson
City. Quality control has shown that 1.25 < percent/ > of the insulin produced
at the plant in Kansas City is defective, while 0.7 < percent/ > of the insulin
produced at the plant in Jefferson City is defective. What is the probability
that a randomly chosen unit of insulin came from the plant in Jefferson City
given that it is defective?
(Hint: Draw a tree diagram first)

You have to be careful to extract the conditional probabilities from the problem.

Checkpoint 4.6.3 WebWork. Here is a more extensive Bayes Theorem
example...

Data from Office on Smoking and Health, Centers for Disease Control and
Prevention, indicate that 36% of adults who did not finish high school, 33%
of high school graduates, 26% of adults who completed some college, and 15%
of college graduates smoke. Suppose that one individual is selected at random
and it is discovered that the individual smokes. Use the probabilities in the
following table to calculate the probability that the individual is a college
graduate.

Education Employed Unemployed
Not a high school graduate 0.0975 0.0080
High school graduate 0.3108 0.0128
Some college, no degree 0.1785 0.0062
Associate Degree 0.0849 0.0023
Bachelor Degree 0.1959 0.0041
Advanced Degree 0.0975 0.0015

Probability =
Hints: This problem has all the information you need, but not in the typical
ready-to-use form. The table above can tell you the proportion of people with
various levels of education in the population. Keep in mind that any degree
(Associate, Bachelor, or Advanced) counts as graduating from college.

Notice that having the data expressed in tabular form sometimes makes it
easier to deal with.

The interactive cell below can be used to easily compute all of the condi-
tional probabilities associated with Bayes’s Theorem. Notice how the relative
size of the pie-shaped partition changes when you presume that an event in
the space has already occurred.

# This function is used to convert an input string into
separate entries

def g(s): return str(s).replace(',','␣').replace('(','␣
').replace(')','␣').split()
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@interact
def

_(Partition_Probabilities=input_box('0.35 ,0.25 ,0.40',label="$␣
P(S_1),P(S_2) ,...␣$"),

Conditional_Probabilities=input_box('0.02 ,0.01 ,0.03',label='$␣
P(A|S_1),P(A|S_2) ,...␣$'),

print_numbers=checkbox(True ,label='Numerical␣Results␣
on␣Graphs?'),

auto_update=False):

Partition_Probabilities = g(Partition_Probabilities)
Conditional_Probabilities = g(Conditional_Probabilities)
n = len(Partition_Probabilities)
n0 = len(Conditional_Probabilities)

# below needs to be n not equal to n0 but mathbook xml
will not let me get the other

if (n > n0):
pretty_print("You␣must␣have␣the␣same␣number␣of␣

partition␣probabilities␣and␣conditional␣
probabilities.")

else: # input data streams
now are the same size!
colors = rainbow(n)
accum = float (0) # to test whether

partition probs sum to one
ends = [0] # where the graphed

partition sectors change in pie chart
mid = [] # middle of each pie

chart sector used for placement of text
p_Sk_given_A = [] # P( S_k | A )
pA = 0 # P(A)
PP=[] # array to hold the

numerical Partition Probabilities
CP=[] # array to hold the

numerical Conditional Probabilities
for k in range(n):

PP.append(float(Partition_Probabilities[k]))
CP.append(float(Conditional_Probabilities[k]))
p_Sk_given_A.append(PP[k]*CP[k] )
pA += p_Sk_given_A[k]
accum = accum + PP[k]
ends.append(accum)
mid.append ((ends[k]+accum)/2)

#
# Marching along from 0 to 1, saving angles for each

partition sector boundary.
# Later , we will multiple these by 2*pi to get actual

sector boundary angles.
#

if abs(accum -float (1)) >0.0000001: # Due to
roundoff issues , this should be close enough.
pretty_print("Sum␣of␣probabilities␣should␣equal␣

1.")

else: # probability data
is sensible
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#
# Draw the Venn diagram by drawing sectors from the angles

determined above
# First , create a circle of radius 1 to illustrate the the

sample space S
# Then draw each sector with varying colors and print out

their names on the edge
#

G = circle ((0,0), 1,
rgbcolor='black ',fill=False ,
alpha =0.4, aspect_ratio=True ,axes=False ,thickness =5)

for k in range(n):
G += disk ((0,0), 1, (ends[k]*2*pi,

ends[k+1]*2* pi),
color=colors[mod(k,10)],alpha = 0.2)

G +=
text('$S_'+str(k+1)+'$' ,(1.1*cos(mid[k]*2*pi),
1.1* sin(mid[k]*2*pi)), rgbcolor='black ')

G += circle ((0,0), 0.6, facecolor='yellow ', fill
= True , alpha = 0.1,
thickness=5,edgecolor='black ')

# Print the probabilities corresponding to each particular
region as a list and on the graphs

if print_numbers:

html("$P(A)␣=␣%s$"%(str(pA),))
for k in range(n):

html("$P(S_{%s}␣|␣A)$"%(str(k+1))+"$␣=␣
%s$"%str(p_Sk_given_A[k]/pA))

G +=
text(str(p_Sk_given_A[k]) ,(0.4*cos(mid[k]*2*pi),
0.4* sin(mid[k]*2*pi)),
rgbcolor='black ')

G += text(str(PP[k] -
p_Sk_given_A[k]) ,(0.8*cos(mid[k]*2*pi),
0.8* sin(mid[k]*2*pi)),
rgbcolor='black ')

# This is essentially a repeat of some of the above code
but focused only on creating the smaller inner circle
dealing

# with the set A so that the sectors now correspond in area
to the Bayes Theorem probabilities

accum = float (0)
ends = [0] # where the

graphed partition sectors change in pie chart
mid = [] # middle of each

pie chart sector used for placement of text
for k in range(n):

accum += float(p_Sk_given_A[k]/pA)
ends.append(accum)
mid.append ((ends[k]+accum)/2)

H = circle ((0,0), 1,
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rgbcolor='black ',fill=False ,
alpha=0, aspect_ratio=True ,axes=False ,thickness =0)

H += circle ((0,0), 0.6,
facecolor='yellow ',fill=True ,
alpha =0.1, aspect_ratio=True ,axes=False ,thickness=5,edgecolor='black ')

for k in range(n):
H += disk ((0,0), 0.6, (ends[k]*2*pi,

ends[k+1]*2* pi),
color=colors[mod(k,10)],alpha = 0.2)

H +=
text('$S_'+str(k+1)+'|A$' ,(0.7*cos(mid[k]*2*pi),
0.7* sin(mid[k]*2*pi)), rgbcolor='black ')

# Now , print out the bayesian probabilities using
the smaller set A only

if print_numbers:
for k in range(n):

H += text(str(
N(p_Sk_given_A[k]/pA,digits =4)
) ,(0.4*cos(mid[k]*2*pi),
0.4* sin(mid[k]*2*pi)),
rgbcolor='black ')

G.show(title='Venn␣diagram␣of␣partition␣with␣A␣
in␣middle ')

print
H.show(title='Venn␣diagram␣presuming␣A␣has␣

occured ')

Checkpoint 4.6.4 Insured vs Accident. Your automobile insurance com-
pany uses past history to determine how to set rates by measuring the number
of accidents caused by clients in various age ranges. The following table sum-
marizes the proportion of those insured and the corresponding probabilities by
age range:

Age Proportion of Insured Probability of Accident
16-20 0.05 0.08
21-25 0.06 0.07
26-55 0.49 0.02
55-65 0.25 0.03

over 65 0.15 0.04

Table 4.6.5: Age vs Accident Likelihood

One of your family friends insured by this company has an accident.

1. Determine the conditional probability that the driver was in the 16-20
age range.

2. Compare this to the probability that the driver was in the 18-20 age
range. Discuss the difference.

3. Determine how much more the company should charge for someone in
the 16-20 age range compared to someone in the 26-55 age range.
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Solution. Plug the middle column into the first input box and the right
column into the second input box of the Bayes Sage Cell

Checkpoint 4.6.6 Spinal bifida odds. Congratulations...your family is
having a baby! As part of the prenatal care, some testing is part of the normal
procedure including one for spinal bifida (which is a condition in which part
of the spinal cord may be exposed.) Indeed, measurement of maternal serum
AFP values is a standard tool used in obstetrical care to identify pregnancies
that may have an increased risk for this disorder. You want to make plans for
the new child’s care and want to know how serious to take the test results.
However, some times the test indicates that the child has the disorder when in
actuality it does not (a false positive) and likewise may indicate that the child
does not have the disorder when in fact it does (a false negative.)
The combined accuracy rate for the screen to detect the chromosomal abnor-
malities mentioned above is approximately 85

• Approximately 85 out of every 100 babies affected by the abnormalities
addressed by the screen will be identified. (Positive Positive)

• Approximately 5

1. Given that your test came back negative, determine the likelihood that
the child will actually have spinal bifida.

2. Given that your test came back negative, determine the likelihood that
the child will not have spina bifida

3. Given that a positive test means you have a 1/100 to 1/300 chance of
experiencing one of the abnormalities, determine the likelihood of spinal
bifida in a randomly selected child.

4.7 Independence

You have seen when repeatedly sampling without replacement leads to a change
the the likelihood of some event in successive trials. Indeed, this is what condi-
tional probabilities above illustrate. However, when sampling with replacement
you may find a different situation arises. Indeed, you easily notice that when
flipping a coin, P(Heads) = 1/2 regardless of the outcome of any previous flip.
In situations such as this where the probability of an event is not affected by
the occurrence (or lack of occurrence) of some other event determining the
probability of compound events can be greatly simplified.

Definition 4.7.1 Independent Events. Events A and B are independent
provided

P (A ∩B) = P (A)P (B)

♦

Corollary 4.7.2 Independence and Conditional Probability. Given
independent events 4.7.1 A and B,

P (B|A) = P (B)

and
P (A|B) = P (A).
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Proof. By the multiplication rule and the definition of independence, for any
events A and B

P (A) · P (B) = P (A ∩B) = P (A) · P (B|A).

Therefore, if P(A) is non-zero, canceling yields the first result. Switching
around notation provides the second. �

Corollary 4.7.3 Independence and Mutual Exclusivity. If events A
and B are both independent 4.7.1 and mutually exclusive 4.3.1, then at least
one of them has zero probability.

Proof. By independence, P (A ∩ B) = P (A) · P (B). However, by mutually
exclusivity, A ∩B = ∅ ⇒ P (A ∩B) = 0 gives

P (A) · P (B) = 0.

Hence, one or the other (or both) must be zero. �

Corollary 4.7.4 Successive Independent Events. Given a sequence of
mutually independent events A1, A2, A3, ...,

P (∩k∈RAk) =
∏
k∈R

P (Ak)

4.8 Summary
TBA

4.9 More Exercises
Checkpoint 4.9.1 Conditional Basic computation. Given P(A) = 0.43,
P(B) = 0.72, and P (A ∩B) = 0.29, determine

1. P (A ∪B)

2. P (B|A)

3. P (A|B)

4. P (Ac ∩Bc)
Checkpoint 4.9.2 Gender vs University Major. The table below classi-
fies students at your university according to gender and according to major.

Enrollment Male Female Totals
STEM 420 510 930

Business 320 270 590
Other 610 710 1320
Totals 1350 1490 2840

Table 4.9.3: Gender vs Major

Determine the following:

1. P( STEM major )

2. P( STEM | Female )
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3. P( Female | STEM )

4. P( Female | Not STEM)
Checkpoint 4.9.4 Mean Tough Teacher. You are in a probability and
statistics class with a teacher who has predetermined that only one student can
make an A for the course. To be "fair", he places a number of slips of paper
in a bowl equal to the number of students in the course with one of the slips
having an A designation. Students in the course each can pick once randomly
from the bowl and without replacement to see if they can get the lucky slip.
Determine the following:

1. If there are 15 students in your course, determine the probabilities of
getting an A in the course if you pick first and if you pick last.

2. Since the teacher likes you the most, she will give you the option of
deciding whether to pick at any position. If so, determine the position
that would give you the best likelihood of getting the A slop.

3. Suppose again that the teacher was feeling more generous and decided
instead to allow for two A’s. Determine how that changes your likelihood
of winning and on what position you would like to choose.

4. Continue as above except that only one slip does not have an A on it.

5. Discuss how your choice is affected by the number of students in the
course or the number of A slips included.

Solution. Using the normal equally-likely definition, P (first) = 1
15 .

To get the A on the last pick requires that all of the previous picks to be
something else. You don’t get the opportunity to pick the A if it has already
been selected. So, if L stands for losing (not getting the A), then

P (last) = P (LLLLLLLLLLLLLLA) =
14 · 13 · 12 · 11 · 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1
15 · 14 · 13 · 12 · 11 · 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2

=
1

15
.

Therefore, it is the same probability of getting the A whether you pick first or
last. In general, to win on the kth pick gives

P (kth) = P (LL...LA) =
14 · 13 · ... · (15− k) · 1

15 · 14... · (16− k) · (15− k)
=

1

15

Hence, it is the same probability regardless of when you get to pick.
If there are two A’s possible, then the options for person k in include either
receiving the first of the two slips or the second. The probability for determin-
ing the first of the two is computed in a manner similar to above except that
there is one more A and one less other.

P (kth as first) = P (LL...LA) =
13 · 12 · ... · (15− k) · 2

15 · 14... · (16− (k + 1)) · (16− k)
=

2 · (15− k)

15 · 14

The probability of getting the second A means exactly one of the previous k-1
selections also picked the other A. There are k-1 ways that this could happen.
Computing for one of the options and multiplying by k-1 gives

P (kth as second) = P (LL...LAA) = (k − 1) · 13 · 12 · ... · (15− k) · 2 · 1
15 · 14... · (16− k) · (15− k)

=
2 · (k − 1)

15 · 14
.

Adding these two together gives

P (getting an A when there are two) =
2 · (15− k) + 2 · (k − 1)

15 · 14
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=
28

15 · 14
=

2

15
.

For example, if k = 5,

P (5th as first) = P (LLLLA)

=
13 · 12 · 11 · 10 · 2
15 · 14 · 13 · 12 · 11

=
20

15 · 14

P (5th as second) = P (LL...LAA)

= 4 · 13 · 12 · ·11 · 2 · 1
15 · 14 · 13 · 12 · 11

=
8

15 · 14
.

Adding these together yields the general result. So, once again, it doesn’t
matter which pick you use since the likelihood of getting an A is the same for
all positions.
Checkpoint 4.9.5 Shared Birthdays. In this problem, you want to con-
sider how many people are necessary in order to have an even chance of finding
two or more who share a common birthday. Toward that end, assuming a year
has exactly 365 equally likely days let r be the number of people in a sample
and consider the following:

1. Determine the number of different outcomes of birthdays when order
matters and birthdays are allowed to be repeated.

2. Determine the number of different outcomes when birthdays are not al-
lowed to be repeated.

3. Determine the probability that two or more of your r students have the
same birthday.

4. Prepare a spreadsheet with the probabilities found above from r=2 to
r=50. Determine the value of r for which this probability is closest to
0.5.

5. As best as you can, sample two groups of the size found above and gather
birthday information. For each group, determine if there is a shared
birthday or not. Compare your results with others in the class to check
whether the sampling validates that about half of the samples should
have a shared birthday group.

Solution. The correct sample size to get past a probability of 0.5 is 23 people.
You should justify this numerically by justifying the following probabilities:

# P(Match)
1 0
2 0.0027
3 0.0082
4 0.0164
5 0.0271
6 0.0405
7 0.0562
8 0.0743
9 0.0946
10 0.1169
11 0.1411
12 0.1670
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13 0.1944
14 0.2231
15 0.2529
16 0.2836
17 0.3150
18 0.3469
19 0.3791
20 0.4114
21 0.4437
22 0.4757
23 0.5073
24 0.5383
25 0.5687
26 0.5982
27 0.6269
28 0.6545
29 0.6810
30 0.7063

Checkpoint 4.9.6 Internet meme solution. This one is from an internet
meme: Two fair 6-sided dice are rolled together and you are told that at least
one of the dice is a 6. Given that a 6 will be removed, determine the probability
that the other die is a 6.
Solution. In this case, you are presented with an outcome where the possible
choices consist of (1,6), (2,6), (3,6), (4,6), (5,6), (6,6), (6,5), (6,4), (6,3), (6,2),
(6,1). Each of these would satisfy the condition that at least one of the dice is a
6. From this group, the only success that satisfies being a 6, given that another
6 has already been removed, is the (6,6) outcome. Therefore, the conditional
probability is 1/11.
It is interesting to note that if the question instead was posed so that one of
the dice was a 6 and it was removed, then the probability of the other dice
showing a 6 would be 1/6.

Checkpoint 4.9.7 100 people on an airplane with boarding pass is-
sues. This is a famous problem. 100 people are in line, boarding an airplane
with 100 seats, one at a time. They are in no particular order. The first person
has lost his boarding pass, so he sits in a random seat. The second person does
the following:

• Goes to his seat (the one it says to go to on the boarding pass). If
unoccupied, sit in it.

• If occupied, find a random seat to sit in.

Everyone else behind him does the same. What is the probability that the last
person sits in his correct seat?
Solution. To get the idea, consider what happens with only 2 people, then
only 3. Generalize.
The answer is 1/2. To obtain this, you can define recursively the probability
that the kth person sits in their own set as f(k). Consider the first traveler’s
and your seats. Then you get the following cases:

• P(first guy sits in his own seat and you sit in yours) = 1
k · 1

• P(first guy sits in your seat and you do not sit in yours) = 1
k · 0

• P(other k-2 travelers make their choices) = (k − 2) 1
kf(k − 1)
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f(k) = 1/k + 0 + (k − 2)/kf(k − 1)

with f(2) = 1/2.
For example,

• f(3) = 1/3 + f(2)/3 = 1/3 + 1/6 = 1/2.

• f(4) = 1/4 + 2/4 f(3) = 1/4 + 1/2 1/2 = 1/2.

• f(5) = 1/5 + 3/5 1/2 = 1/2.

• f(6) = 1/6 + 4/6 1/2 = 1/2.

Etc.
Checkpoint 4.9.8 Basic Independence Calculations. Given P(A) =
0.43, P(B) = 0.72, and P (A∩B) = 0.31, verify that A and B are not indepen-
dent.
Solution. A and B are independent by definition 4.7.1 provided

P (A ∩B) = P (A)P (B).

Using the provided values, notice that

P (A ∩B) = 0.31

but
P (A)P (B) = 0.43 · 0.72 = 0.3096.

Since these are not equal (regardless how close) then A and B are not indepen-
dent.
Checkpoint 4.9.9 Compound events and Independence. Given A, B,
and C are independent events, with P(A) = 2/5, P(B) = 3/4, and P(C) = 1/6,
determine:

1. P (A ∩B ∩ C)

2. P (Ac ∩Bc ∩ C)

3. P (A ∪B ∪ C)

Solution. Extending the definition of independent events 4.7.1 gives

P (A ∩B ∩ C) =
2

5

3

4

1

6
.

By the corollary for independent events, complements also maintain a similar
independence. So

P (Ac ∩Bc ∩ C)
3

5

1

4

1

6
.

To complete the third part, use the inclusion/exclusion result 4.3.9 for dealing
with three sets.
Checkpoint 4.9.10 Rolling multiple dice. For a pair of dice you want to
consider the events A = rolling a 7 or 11 and B = otherwise...as in the first
roll in the game of craps. Further, for notation purposes let’s take ABA (for
example) to mean event A occurs on the first roll, event B occurs on the second
roll, and event A occurs again on the third roll...in that order only. If you roll
the dice 5 times, determine

1. P(AABBB)
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2. P(BBBAA)

3. The probability of getting A on exactly two rolls of the dice.

Solution. Successive rollings of a pair of dice are independent events 4.7.1.
Therefore,

P (AABBB) = P (A)P (A)P (B)P (B)P (B) =
8

36

8

36

28

36

28

36

28

36

Similarly for the second part.
For the third part, notice that there will be

(
5
2

)
ways to rearrange 2 A’s and 3

B’s but that each of these will have two 8/36’s and three 28/36’s but just in a
different order. Therefore, you will get

10 · 8

36

8

36

28

36

28

36

28

36

Checkpoint 4.9.11 Redundancy. To help "insure" the success of a mission,
you propose several redundant components so that the mission is a success if
one or more succeed. Supposing that these separate components act indepen-
dently of each other and that each component has a 75

1. The probability of failure if you utilize 2 components.

2. The probability of failure if you utilize 5 components.

3. The number of components needed to insure that the probability of suc-
cess is at least 99

Checkpoint 4.9.12 Internet Meme redux. Again, from an internet meme:
Two fair 6-sided dice are rolled together and you are told that at least one of
the dice is a 6. A 6 is removed and you are presented with the other die.
Determine the probability that it is a 6.
Solution. For this setting, notice that the outcomes from each of the two
dice are independent of each other. Removing one of the dice, regardless of it’s
value, does not affect the other. The question in this case does not ask for a
conditional probability.
Checkpoint 4.9.13 Single Elimination Tournament. Consider a n=4
team single-elimination tournament where the teams are "seeded" from 1 (the
best team) to 4 (the worst team). For this tournament, team 1 plays team 4
and team 2 plays team 3. The winner of each play each other to determine the
final winner. When teams j and k play, set P(j wins) = k

j+k and similarly for
team k. Assuming separate games are independent of each other, determine
the probability that team 4 wins the tournament. What about with 8 teams?
What about 64 teams?
Solution. P(4 wins) = P(4 beats 1) P(4 beats the winner of the other bracket)
P(4 wins) = (1/5) * P(4 beats 2 | 2 beats 3) + P(4 beats 3 | 3 beats 2)
P(4 wins) = 1/5 [(3/5)(2/6) + (2/5)(3/7)] = 78/1050 = 0.0742
For the other teams:
P(1 wins) = 4/5 [(3/5)(2/3) + (2/5)(3/4) ] = 0.56
P(2 wins) = 3/5 [(4/5)(1/3) + (1/5)(4/6) ] = 0.24
P(3 wins) = 2/5 [(4/5)(1/4) + (1/5)(4/7) ] = 0.1257



Chapter 5

Probability Functions

5.1 Introduction

Each of the probability exercises thus far required you to utilize basic definitions
and theorems to determine the answer. Starting a new problem meant starting
over from scratch. This is burdensome. However, you may have noticed that
some of the ways you might have created solutions for some problems ending
up looking very similar to the solutions for others. In this chapter, you will
consider the framework needed for creating general solution techniques. These
techniques will give a number of "distributions" which are general ways to solve
a particular type of problem.

Toward that end, in this chapter you will see how to create a random vari-
able which takes items in the sample space and assigns corresponding numerical
values. From that, you will see how to create "Probability Functions" on that
variable that provide the desired probability by simple function evaluation.
General properties these functions possess will also be developed.

5.2 Random Variables

For a given set of events, we might have difficulty doing mathematics since the
outcomes are not numerical. In order to accomodate our desire to convert to
numerical measures we want to assign numerical values to all outcomes. The
process of doing this creates what is known as a random variable.
Definition 5.2.1 Random Variable. Given a random experiment with
sample space S, a function X mapping each element of S to a unique real
number is called a random variable. For each element s from the sample space
S, denote this function by

X(s) = x

and let R be the range of X. R will be called "the space of X" and in notation

R = x : X(s) = x, for somes ∈ S.

♦

We will make various restrictions on the range of the random variable to
fit different generalized problems. Then, we will be able to work on a problem
(which may be inherently non-numerical) by using the random variable in
subsequent calculations.
Example 5.2.2 Success vs Failure. When dealing with only two outcomes,

77
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one might use
S = success, failure .

Choose

X(success) = 1

X(failure) = 0.

Then, R=0,1. �

Example 5.2.3 Standard Dice Pairs. When gambling with a pair of dice,
one might use S=ordered pairs of all possible rolls. Then

S = (a,b): a=die 1 outcome, b=die 2 outcome.

Choose
X((a, b)) = a+ b.

Then, R=2, 3, 4, 5, ..., 12. �

Example 5.2.4 Other Dice Options. When rolling dice in a board game
(like RISK), one might use

S = (a,b): a=die 1 outcome, b=die 2 outcome

Choose
X((a, b)) = maxa,b.

Then, R=1, 2, 3, 4, 5, 6. �

Definition 5.2.5 Countable and Uncountable Sets. R contains a count-
able number of points if either R is finite or there is a one to one correspondence
between R and the positive integers. Such a set will be called discrete. We will
see that often the set R is not countable. If R consists of an interval of points
(or a union of intervals), then we call X a continuous random variable. ♦

5.3 Probability Functions
In the formulas below, we will presume that we have a random variable X which
maps the sample space S onto some range of real numbers R. From this set, we
then can define a probability function f(x) which acts on the numerical values
in R and returns another real number. We attempt to do so to obtain (for
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discrete values) P(sample space value s)= f(X(s)). That is, the probability
of a given outcome s is equal to the composition which takes s to a numerical
value x which is then plugged into f to get the same final values.

For example, consider a random variable which assigns a 1 when you roll
a 1 on a six-sided die and 0 otherwise. Presuming each side is equally likely,
f(1) = 1

6 and f(0) = 5
6 .

Definition 5.3.1 Probability "Mass" Function. Given a discrete random
variable X on a space R, a probability mass function on X is given by a function
f : R→ R such that:

∀x ∈ R, f(x) > 0∑
x∈R

f(x) = 1

A ⊂ R⇒ P (X ∈ A) =
∑
x∈A

f(x)

For x 6∈ R, you can use the convention f(x)=0. ♦

Definition 5.3.2 Probability "Density" Function. Given a continuous
random variable X on a space R, a probability density function on X is given
by a function f : R→ R such that:

∀x ∈ R, f(x) > 0∫
R

f(x)dx = 1

A ⊂ R⇒ P (X ∈ A) =

∫
A

f(x)dx

For x 6∈ R, you can use the convention f(x)=0. ♦

For the purposes of this book, we will use the term "Probability Function"
to refer to either of these options.
Example 5.3.3 Discrete Probability Function. Consider f(x) = x/10
over R = 1,2,3,4. Then, f(x) is obviously positive for each of the values in R
and certainly∑

x∈R
f(x) = f(1) + f(2) + f(3) + f(4) = 1/10 + 2/10 + 3/10 + 4/10 = 1.

Therefore, f(x) is a probability mass function over the space R. �

# Combining all of the above into one interactive cell
@interact
def _(D = input_box ([1,2,3,5,6,8,9,11,12,14], label="Enter␣

domain␣R␣(in␣brackets):"),
Probs =

input_box ([1/20 ,1/20 ,1/20 ,3/20 ,1/20 ,4/20 ,4/20 ,1/20 ,1/20 ,3/20] , label="Enter␣
corresponding␣f(x)␣(in␣brackets):"),

n_samples=slider (100 ,10000 ,100 ,100 , label="Number␣of␣
times␣to␣sample␣from␣this␣distribution:")):

n = len(D)
R = range(n)
one_huh = sum(Probs)
pretty_print('\n\nJust␣to␣be␣certain ,␣we␣should␣check␣to␣

make␣certain␣the␣probabilities␣sum␣to␣1\n')
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pretty_print(html('$\sum_{x\epsilon␣R}␣f(x)␣=␣
%s$'%str(one_huh)))

G = Graphics ()
if len(D)==len(Probs):

f = zip(D,Probs)
meanf = 0
variancef = 0
for k in R:

meanf += D[k]*Probs[k]
variancef += D[k]^2* Probs[k]
G +=

line ([(D[k],0) ,(D[k],Probs[k])],color='green ')
variancef = variancef - meanf^2
sd = sqrt(variancef)
G += points(f,color='blue',size =50)
G += point((meanf ,0),color='yellow ',size=60, zorder =3)
G +=

line ([(meanf -sd ,0) ,(meanf+sd ,0)],color='red',thickness =5)

g = DiscreteProbabilitySpace(D,Probs)
pretty_print('␣␣␣␣␣mean␣=␣%s'%str(meanf))
pretty_print('␣variance␣=␣%s'%str(variancef))

# perhaps to add mean and variance for pmf here
else:

print 'Domain␣D␣and␣Probabilities␣Probs␣must␣be␣
lists␣of␣the␣same␣size'

# Now , let's sample from the distribution given above
and see how a random sampling matches up

counts = [0] * len(Probs)
X = GeneralDiscreteDistribution(Probs)
sample = []

for _ in range(n_samples):
elem = X.get_random_element ()
sample.append(D[elem])
counts[elem] += 1

Empirical = [1.0*x/n_samples for x in counts] # random

samplemean = mean(sample)
samplevariance = variance(sample)
sampdev = sqrt(samplevariance)

E = points(zip(D,Empirical),color='orange ',size =40)
E +=

point((samplemean ,0.005) ,color='brown ',size=60, zorder =3)
E +=

line ([( samplemean -sampdev ,0.005) ,(samplemean+sampdev ,0.005)],color='orange ',thickness =5)
(G+E).show(ymin=0,figsize =(8,5))

Example 5.3.4 Continuous Probability Function. Consider f(x) =
x2/c for some positive real number c and presume R = [-1,2]. Then f(x) is
nonnegative (and only equals zero at one point). To make f(x) a probability
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density function, we must have ∫
x∈R

f(x) = 1.

In this instance you get

1 =

∫ 2

−1

x2/c = x3/(3c)|2−1 =
8

3c
− −1

3c
=

3

c

Therefore, f(x) is a probability density function over R provided = 3. �

Definition 5.3.5 Distribution Function. Given a random variable X on
a space R, a probability distribution function on X is given by a function

F : R→ R 3 F (x) = P (X ≤ x).

♦

Example 5.3.6 Discrete Distribution Function. Using f(x) = x/10 over
R = 1,2,3,4 again, note that F(x) will only change at these four domain values.
We get

X F(x)
x < 1 0

1 ≤ x < 2 1/10
2 ≤ x < 3 3/10
3 ≤ x < 4 6/10

4 ≤ x 1

Table 5.3.7: Discrete Distribution Function Example

�

Example 5.3.8 Continuous Distribution Function. Consider f(x) =
x2/3 over R = [-1,2]. Then, for −1 ≤ x ≤ 2,

F (x) =

∫ x

−1

u2/3du = x3/9 + 1/9.

Notice, F(-1) = 0 since nothing has yet been accumulated over values smaller
than -1 and F(2)=1 since by that time everything has been accumulated. In
summary:

X F(x)
x < −1 0

−1 ≤ x < 2 x3/9 + 1/9

2 ≤ x 1

Table 5.3.9: Continuous Distribution Function Example

�

Theorem 5.3.10 F (x) = 0,∀x < inf(R)

Proof. Let a = inf(R). Then, for x < a,

F (x) = P (X ≤ x) ≤ P (X < a) = 0
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since none of the x-values in this range are in R. �

Theorem 5.3.11 F (x) = 1,∀x ≥ sup(R)

Proof. Let b = sup(R). Then, for

x ≥ b, F (x) = P (X ≤ x) = P (X ≤ b) + P (b < X ≤ x) = P (X ≤ b) = 1

since all of the x-values in this range are in R and therefore will either sum
over or integrate over all of R. �

Theorem 5.3.12 F is non-decreasing

Proof. Case 1: R discrete

∀x1, x2 ∈ Z 3 x1 < x2

F (x2) =
∑
x≤x2

f(x)

=
∑
x≤x1

f(x) +
∑

x1<x≤x2

f(x)

≥
∑
x≤x1

f(x) = F (x1)

Case 2: R continuous

∀x1, x2 ∈ R 3 x1 < x2

F (x2) =

∫ x2

−∞
f(x)dx

=

∫ x1

−∞
f(x)dx+

∫ x2

x1

f(x)dx

≥
∫ x1

−∞
f(x)dx

= F (x1) �

Theorem 5.3.13 Using Discrete Distribution Function to compute
probabilities. For x ∈ R, f(x) = F (x)− F (x− 1)

Proof. Assume x ∈ R for some discrete R. Then,

F (x)− F (x− 1) =
∑
u≤x

f(u)−
∑
u<x

f(u) = f(x) �

Theorem 5.3.14 Using Continuous Distribution function to compute
probabilities. For a < b, (a, b) ∈ R,P (a < X ≤ b) = F (b)− F (a)

Proof. For a and b as noted, consider

F (b)− F (a) =

∫ b

−∞
f(x)dx−

∫ a

−∞
f(x)dx

=

∫ b

a

f(x)dx

= P (a < x ≤ b) �
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Corollary 5.3.15 For continuous distributions, P(X = a) = 0

Proof. We will assume that F(x) is a continuous function. With that assump-
tion, note

P (a− ε < x ≤ a) =

∫ a

a−ε
f(x)dx = F (a)− F (a− ε)

Take the limit as ε→ 0+ to get the result noting that �

Theorem 5.3.16 F(x) vs f(x), for continuous distributions. If X is
a continuous random variable, f the corresponding probability function, and F
the associated distribution function, then

f(x) = F ′(x)

Proof. Assume X is continuous and f and F as above. Notice, by the definition
of f, limx→±∞ f(x) = 0 since otherwise the integral over the entire space could
not be finite.

Now, let A(x) be any antiderivative of f(x). Then, by the Fundamental
Theorem of Calculus,

F (x) =

∫ x

−∞
f(u)du

= A(x)− lim
u→−∞

A(u)

Hence, F ′(x) = A′(x)− limu→−∞A′(u) = f(x) as desired. �

Definition 5.3.17 Percentiles for Random Variables. For 0 < p < 1,
the 100pth percentile is the largest random variable value c that satisfies

F (c) = p.

For continuous random variables over an interval R = [a,b], you will solve for
c in the equation ∫ c

a

f(x)dx.

For discrete random variables, it is unlikely that a particular percentile will
land exactly on one of the elements of R but you will want to take the smallest
value in R so that F (c) ≥ p.
The 50th percentile (as before) is also known as the median. ♦

Example 5.3.18 Continuous Percentile. For our earlier example with
f(x) = x2/3 on R = [-1,2], the 50th percentile (i.e. the median) is found by
starting with p = 0.5 and then solving

F (c) = 0.5

or
c3/9 + 1/9 = 1/2

or
c3 + 1 = 9/2.

After solving for c, you find

median = 3
√

7/2 ≈ 1.518.

�
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Example 5.3.19 Discrete Percentile. TBA, using one of the table exam-
ples from above. �

5.4 Expected Value
Blaise Pascal was a 17th century mathematician and philosopher who was ac-
complished in many areas but may likely be best known to you for his creation
of what is now known as Pascal’s Triangle. As part of his philosophical pur-
suits, he proposed what is known as "Pascal’s wager". It suggests two mutually
exclusive outcomes: that God exists or that he does not. His argument is that
a rational person should live as though God exists and seek to believe in God.
If God does not actually exist, such a person will have only a finite loss (some
pleasures, luxury, etc.), whereas they stand to receive infinite gains as repre-
sented by eternity in Heaven and avoid an infinite losses of eternity in Hell.
This type of reasoning is part of what is known as "decision theory".

You may not confront such dire payouts when making your daily decisions
but we need a formal method for making these determinations precise. The
procedure for doing so is what we call expected value.
Definition 5.4.1 Expected Value. Given a random variable X over space R,
corresponding probability function f(x) and "value function" v(x), the expected
value of v(x) is given by

E = E[v(X)] =
∑
x∈R

v(x)f(x)

provided X is discrete, or

E = E[v(X)] =

∫
R

v(x)f(x)dx

provided X is continuous. ♦

Theorem 5.4.2 Expected Value is a Linear Operator.

1. E[c] = c

2. E[c v(X)] = c E[v(X)]

3. E[v(X) + w(X)] = E[v(X)] + E[w(X)]

Proof. Each of these follows by utilizing the corresponding linearity properties
of the summation and integration operations. For example, to verify part three
in the continuous case:

E[v(X) + w(X)] =

∫
x∈R

[v(x) + w(x)]f(x)dx

=

∫
x∈R

v(x)f(x)dx+

∫
x∈R

w(x)f(x)dx

= E[v(X)] + E[w(X)]. �

Checkpoint 5.4.3 WebWork. Use algebra and the theorem above.

If E[X] = −3 and Var(X) = 1, then
E[(1 + 4X)2] =
and
Var(4 + 5X) = .
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Example 5.4.4 Discrete Expected Value. Consider f(x) = x/10 over R
= 1,2,3,4 where the payout is 10 euros if x=1, 5 euros if x=2, 2 euros if x=3
and -7 euros if x = 4. Then your value function would be

v(1) = 10, v(2) = 5, v(3) = 2, v(4) = −7.

Computing the expect payout gives

E = 10× 1/10 + 5× 2/10 + 2× 3/10− 7× 4/10 = −2/10

Therefore, the expected payout is actually negative due to a relatively large
negative payout associated with the largest likelihood outcome and the larger
positive payout only associated with the least likely outcome. �

Example 5.4.5 Continuous Expected Value. Consider f(x) = x2/3 over
R = [-1,2] with value function given by v(x) = ex − 1. Then, the expected
value for v(x) is given by

E =

∫ 2

−1

(ex − 1) · x2/3 = −1/9 · (e+ 15) · e−1 + 2/3 · e2 − 8/9 ≈ 3.3129

�

Definition 5.4.6 Theoretical Measures. Given a random variable with
probability function f(x) over space R

1. The mean of X = µ = E[x]

2. The variance of X = σ2 = E[(x− µ)2]

3. The skewness of X = γ1 = E[(x−µ)3]
σ3

4. The kurtosis of X = γ2 = E[(x−µ)4]
σ4

♦

Theorem 5.4.7 Alternate Formulas for Theoretical Measures.

1. σ2 = E[x2]− µ2 = E[X(x− 1)] + µ− µ2

2. γ1 = 1
σ3 ·

[
E[X3]− 3µE[X2] + 2µ3

]
3. γ2 = 1

σ4 ·
[
E[X4]− 4µE[X3] + 6µ2E[X2]− 3µ4

]
Proof. In each case, expand the binomial inside and use the linearity of
expected value. �

Consider the following example when computing these statistics for a dis-
crete variable. In this case, we will utilize a variable with a relatively small
space so that the summations can be easily done by hand. Indeed, consider

X f(x)
0 0.10
1 0.25
2 0.40
4 0.15
7 0.10

Table 5.4.8: Discrete Probability Function Example
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Using the definition of mean as a sum,

µ = 0 · 0.10 + 1 · 0.25 + 2 · 0.40 + 4 · 0.15 + 7 · 0.10

= 0 + 0.25 + 0.80 + 0.60 + 0.70

= 2.35

Notice where this lies on the probability histogram for this distribution.
For the variance

σ2 = E[X2]− µ2

=
[
02 · 0.10 + 12 · 0.25 + 22 · 0.40 + 42 · 0.15 + 72 · 0.10

]
− 2.352

= 0 + 0.25 + 1.60 + 2.40 + 4.90− 5.5225

= 9.15− 5.225

= 3.6275

and so the standard deviation σ =
√

3.6275 ≈ 1.90. Notice that 4 times this
value encompasses almost all of the range of the distribution.

For the skewness

Numerator = E[X3]− 3µE[X2] + 2µ3

=
[
03 · 0.10 + 13 · 0.25 + 23 · 0.40 + 43 · 0.15 + 73 · 0.10

]
− 3 · 2.35 · 9.15 + 2 · 2.353

≈ 0 + 0.25 + 3.20 + 9.60 + 34.3− 64.5075 + 25.96

= 47.35− 64.5075 + 25.96

≈ 8.80

which yields a skewness of γ1 = 8.80/σ3 ≈ 1.27. This indicates a slight skew-
ness to the right of the mean. You can notice the 4 and 7 entries on the
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histogram illustrate a slight trailing off to the right.
Finally, for kurtosis

Numerator = E[X4]− 4µE[X3] + 6µ2E[X2]− 3µ4

=
[
04 · 0.10 + 14 · 0.25 + 24 · 0.40 + 44 · 0.15 + 74 · 0.10

]
− 4 · 2.35 · 47.35 + 6 · 2.352 · 9.152 − 3 · 2.354

≈ 0 + 0.25 + 6.40 + 38.4 + 240.1− 445.09 + 303.19− 91.49

≈ 285.15− 445.09 + 303.19− 91.49

≈ 51.75

which yields a kurtosis of γ2 = 51.75/σ4 ≈ 3.93 which also notes that the data
appears to have a modestly bell-shaped distribution.
Checkpoint 5.4.9 WebWork. .

Find the expected value for the random variable:

X 1 3 5 6
P (X) 0.22 0.16 0.15 0.47

E(X) =

Checkpoint 5.4.10 WebWork. .

Prizes and the chances of winning in a sweepstakes are given in the table below.

Prize Chances
$15,000,000 1 chance in 300,000,000
$550,000 1 chance in 100,000,000
$50,000 1 chance in 80,000,000
$10,000 1 chance in 3,000,000
$600 1 chance in 200,000
A watch valued at $70 1 chance in 8,000

(a) Find the expected value (in dollars) of the amount won by one entry.
(b) Find the expected value (in dollars) if the cost of entering this sweepstakes
is the cost of a postage stamp (34 cents)
Solution. SOLUTION (a) Let W be the amount of money (in dollars) won
by an entry. Then

E[W ] =15000000 · P (W = 15000000) + 550000 · P (W = 550000) + 50000 · P (W = 50000)

+ 10000 · P (W = 10000) + 600 · P (W = 600) + 70 · P (W = 70)

=
15000000

300000000
+

550000

100000000
+

50000

80000000
+

10000

3000000
+

600

200000
+

70

8000
= 0.0712083333333333

So the expected value of the amount won by one entry in the sweepstakes
is about 7 cents. (b) Let X be the net earnings from one entry into the
sweepstakes. Then X = W − 0.34, so

E[X] = E[W − 0.34] = E[W ]− 0.34 = −0.268791666666667.

Hence, taking into account the cost of postage, there is an expected loss of
about 27 cents from one entry into the sweepstakes.
Checkpoint 5.4.11 WebWork. .

The table below summarizes the number of surface flaws found on the paintwork
of new cars following their inspection after primer paint was applied by a new
method:
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No. of flaws No. of cars
0 5
1 9
2 14
3 12
4 6
5 3
6 1

Part a) Find the mean number of flaws per car. Please give your answer to
two decimal places.
The mean number of flaws per car is:
Part b)
Find the variance of the number of flaws per car. Please give your answer to
two decimal places.
The variance of the number of flaws per car is:
Solution. Here n = 50 and the sample mean is

x̄ =
5× 0 + 9× 1 + 14× 2 + 12× 3 + 6× 4 + 3× 5 + 1× 6

50
= 2.36.

The sample variance is

5 (0− 2.36)
2

+ 9 (1− 2.36)
2

+ 14 (2− 2.36)
2

+ 12 (3− 2.36)
2

+ 6 (4− 2.36)
2

+ 3 (5− 2.36)
2

+ 1 (6− 2.36)
2

49

which is 2.072.

Consider the following example when computing these statistics for a con-
tinuous variable. Let f(x) = 3

4 · (1− x
2) over R = [-1,1].
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Then for the mean

µ =

∫ 1

−1

x · 3

4
· (1− x2)dx

=

∫ 1

−1

3

4
· (x− x3)dx

=
3

4
· (x2/2− x4/4)

∣∣1
−1

=
3

4
· [(1/2)− (1/4)]− [(1/2)− (1/4)]

= 0

as expected since the probability function is symmetric about x=0.
For the variance

σ2 =

∫ 1

−1

x2 · 3

4
· (1− x2)dx− µ2

=

∫ 1

−1

·3
4
· (x2 − x4)dx− 0

=
3

4
· (x3/3− x5/5)

∣∣1
−1

=
3

4
· 2 · (1/3− 1/5)

=
3

4
· 4

15

=
1

5

and taking the square root gives a standard deviation slightly less than 1/2.
Notice that four times this value encompasses almost all of the range of the
distribution.

For the skewness, notice that the graph is symmetrical about the mean and
so we would expect a skewness of 0. Just to check it out

Numerator = E[X3]− 3µE[X2] + 2µ3

=

∫ 1

−1

x3 · 3

4
· (1− x2)dx− 3E[X2] · 0 + 03

=

∫ 1

−1

·3
4
· (x3 − x5)dx

=
3

4
· (x4/4− x6/6)

∣∣1
−1

= 0

as expected without having to actually complete the calculation by dividing
by the cube of the standard deviation.

Finally, note that the probability function in this case is modestly close to
a bell shaped curve so we would expect a kurtosis in the vicinity of 3. Indeed,
noting that (conveniently) µ = 0 gives

Numerator = E[X4]− 4µE[X3] + 6µ2E[X2]− 3µ4

=

∫ 1

−1

x4 · 3

4
· (1− x2)dx

=
3

4
· (x5/5− x7/7)

∣∣1
−1
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=
3

4
· 2(1/5− 1/7)

=
3

35

and so by dividing by σ4 =
√

1
5

4

= 1
25 gives a kurtosis of

γ2 =
3

35
/

1

25
=

75

35
≈ 2.14.

Example 5.4.12 Consider our previous example 5.4.5. To compute the mean
and standard deviation for this distribution,

µ =

∫ 2

−1

x · x2/3dx =

∫ 2

−1

x3/3dx =
24

12
− (−1)4

12
=

15

12
=

5

4

and by using the alternate forumulas 5.4.7

σ2 = E[X2]− µ2

=

∫ 2

−1

x2 · x2/3dx− µ2

=

∫ 2

−1

x4/3dx−
(

5

4

=
25

15
− (−1)5

15
− 25

16

=
33

15
− 25

16
=

51

80

which gives

σ =

√
51

80
≈ 0.7984.

For skewness, note that in computing the variance above you also found that

E[X2] =
11

5
.

So, once again by using the alternate forumulas 5.4.7

E[X3] =

∫ 2

−1

x3 · x2/3dx =
x6

18
|2−1 =

7

2

and so

γ1 =
7
2 − 3 · 5

4 ·
11
5 + 2 · ( 5

4 )3√
51
80

3

For kurtosis, you can reuse E[X3] = 7
2 and E[X2] = 11

5 and the alternate
forumulas 5.4.7 to determine

E[(X − µ)4] = E[X4]− 4µ · E[X3] + 6µ2 · E[X2]− 3µ4

which is the numerator for the kurtosis. �
Example 5.4.13 Roulette. Roulette is a gambling game popular in may
casinos in which a player attempts to win money from the casino by predicting
the location that a ball lands on in a spinning wheel. There are two variations
of this game...the American version and the European version. The difference
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being that the American version has one additional numbered slot on the wheel.
The American version of the game will be used for the purposes of this example.
A Roulette wheel consists of 38 equally-sized sectors identified with the num-
bers 1 through 36 plus 0 and 00. The 0 and 00 sectors are colored green and
half of the remaining numbers are in sectors colored red with the remainder
colored black. A steel ball is dropped onto a spinning wheel and as the wheel
comes to rest the sector in which it comes to rest is noted. It is easy to de-
termine that the probability of landing on any one of the 38 sectors is 1/38.
A picture of a typical American-style wheel and betting board is given by .
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(Found at BigFishGames.com.)
Since this is a game in a casino, there must be the opportunity to bet (and
likely lose) money. For the remainder of this example we will assume that you
are betting 1 dollar each time. If you were to bet more then the values would
scale correspondingly. However, if you place your bet on any single number
and the ball ends up on the sector corresponding to that number, you win a
net of 35 dollars. If the ball lands elsewhere you lose your dollar. Therefore
the expected value of winning if you bet on one number is

E[win on one] = 35 · 1

38
− 1 · 37

38
= − 2

38

which is a little more than a nickel loss on average.
You can bet on two numbers as well and if the ball lands on either of the two
then you win a payout in this case of 17 dollars. Therefore the expected value
of winning if you bet on two numbers is

E[win on two numbers] = 17 · 2

38
− 1 · 36

38
= − 2

38
.

Continuing, you can bet on three numbers and if the ball lands on any of the
three then you win a payout of 11 dollars. Therefore the expected value of
winning if you bet on three numbers is

E[win on three numbers] = 11 · 3

38
− 1 · 35

38
= − 2

38
.

You can bet on all reds, all blacks, all evens (ignoring 0 and 00), or all odds
and get your dollar back. The expected value for any of these options is

E[win on eighteen numbers] = 1 · 18

38
− 1 · 20

38
= − 2

38
.

There is one special way to bet which uses the the 5 numbers 0, 00, 1, 2, 3
and pays 6 dollars. This is called the "top line of basket". Notice that the use
of five numbers will make getting the same expected value as the other cases
impossible using regular dollars and cents. The expected value of winning in
this case us

E[win on top line of basket] = 6 · 5

38
− 1 · 33

38
= − 3

38

which is of course worse and is the only normal way to bet on roulette which
has a different expected value.
There are other possible ways to bet on roulette but none provide a better
expected value of winning. The moral of this story is that you should never
bet on the 5 number option and if you ever get ahead by winning on roulette
using any of the possible options then you should probably stop quickly since
over a long period of time it is expected that you will lose an average of 1

19
dollars per game. �

Going back to Pascal’s wager, let

• X = 0 represent disbelief when God doesn’t exist

• X = 1 represent disbelief when God does exist

• X = 2 represent belief when God does exist

• X = 3 represent belief when God does not exist



5.5. STANDARD UNITS 93

Presume that p is the likelihood that God exists. Then you can compute the
expected value of disbelief and the expect value of belief by first creating a
value function. Below, for argument sake we are somewhat randomly assign a
value of one million to disbelief if God doesn’t exist. The conclusions are the
same if you choose any other finite number...

v(0) = 1, 000, 000, f(0) = 1− p
v(1) = −∞, f(1) = p

v(2) =∞, f(2) = p

v(3) = 0, f(3) = 1− p

Then,

E[disbelief] = v(0)f(0) + v(1)f(1)

= 1000000× (1− p)−∞× p
= −∞

if p>0. On the other hand,

E[belief] = v(2)f(2) + v(3)f(3)

=∞× p+ 0× (1− p)
=∞

if p>0. So Pascal’s conclusion is that if there is even the slightest chance that
God exists then belief is the smart and scientific choice.

5.5 Standard Units
Any distribution variable can be converted to “standard units” using the linear
translation

z =
x− µ
σ

.

In doing so, values of z will always represent the number of standard deviations
x is from the mean and will provide “dimensionless” comparisons.
Example 5.5.1 Consider our earlier continuous example 5.4.5 in which we
found µ = 5

4 and σ =
√

51
80 . Then,

P (0 < X < 1) = P

0− 5
4√

51
80

<
X − 5

4√
51
80

<
1− 5

4√
51
80


gives the middle term is Z and the other endpoints are now in standard units
that indicate the number of standard deviations from the mean rather than
actual problem units. �

5.6 Summary
TBA

5.7 Exercises
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Checkpoint 5.7.1 Flipping A Fixed Number of Coins. Consider the
random variable from the previous section where you flip three coins and mea-
sure the number of heads obtained. Determine f(0), f(1), f(2), and f(3) and the
corresponding distribution function F(x). These can be expressed in a table
format. Generalize your answer to the case when you flip a n coins where n is
a fixed natural number.
Checkpoint 5.7.2 Later. B.
Checkpoint 5.7.3 Flipping Fixed Number of Coins. You flip three
coins and measure the number of heads obtained. Determine the space R
for the corresponding random variable X. From the eight possible outcomes,
determine all outcomes corresponding to X=2. Identify the random variable
as discrete or continuous.
Checkpoint 5.7.4 Flipping Coins till success. You flip one coin repeat-
edly until you get a second head. Determine the space R for the corresponding
random variable X. From the possibilities, determine all outcomes correspond-
ing to X=4. Identify the random variable as discrete or continuous.
Checkpoint 5.7.5 Time between Accidents. Now you want to measure
the time between accidents at a particular intersection in town. Determine
the space R for the corresponding random variable X. Describe all outcomes
corresponding to X < 1. Be purposeful in the problem to describe the units
you are using to measure time. Identify the random variable as discrete or
continuous.



Chapter 6

Distributions based upon
Equally likely Outcomes

6.1 Introduction

When motivating our definition of probability you may have noticed that we
modeled our definition on the relative frequency of equally-likely outcomes. In
this chapter you will develop the theoretical formulas which can be used to
model equally-likely outcomes.

In this chapter, you will investigate the following distributions:

1. Discrete Uniform - each of a finite collection of outcomes is equally likely
and prescribed a "position" and X measures the position of an item
selected randomly from the outcomes.

2. Continuous Uniform - an interval of values is possible with sub-intervals
of equal length having equal probabilities and X measures a location
inside that interval.

3. Hypergeometric - each of a finite collection of values are equally likely
and grouped into two classes (successes vs failures) and a subset of that
collection is extracted with X measuring the number of successes in the
sample.

6.2 Discrete Uniform Distribution

In this section, you will investigate distributions that begin with individual
outcomes that are equally likely and expand into more general settings.
Theorem 6.2.1 Discrete Uniform Distribution. Assume outcomes in
R = 1, 2, 3, ..., n are equally likely. Then, the probability function for the
discrete uniform variable X is

f(x) =
1

n

for x ∈ R.

Proof. Assume that you have a variable with space R = 1, 2, 3, ..., n so that
the likelihood of each value is equally likely. Then, the probability function

95
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satisfies f(x) = c for any x ∈ R. As before, since
∑
x∈R f(x) = 1, then

f(x) =
1

n
. �

# Uniform distribution over 1 .. n
pretty_print("Discrete␣Uniform␣Distribution␣over␣the␣set␣1,␣

2,␣...,␣n")
var('x')
@interact
def _(n=slider (2,10,1,2)):

np1 = n+1
R = range(1,np1)
f(x) = 1/n
pretty_print(html('Density␣Function:␣$f(x)␣

=%s$'%str(latex(f(x)))+'␣over␣the␣space␣$R␣=␣
%s$'%str(R)))

points ((k,f(x=k)) for k in R).show()
for k in R:

pretty_print(html('$f(%s'%k+')␣=␣%s'%f(x=k)+'␣
\\ approx␣%s$'%f(x=k).n(digits =5)))

Theorem 6.2.2 Properties of the Discrete Uniform Probability Func-
tion. f(x) = 1

n over R = 1, 2, 3, ..., n satisfies the properties of a discrete
probability function and

1. µ = 1+n
2

2. σ2 = n2−1
12

3. γ1 = 0

4. γ2 = 6
5

1+n2

1−n2

5. Distribution function F(x) = fracxn for x ∈ R.

Proof. Trivially, by construction you get by summing over R = {1, 2, ..., n}
n∑
x=1

1

n
= 1

Also, 1/n is positive for all x values.
To determine the mean,

µ =

n∑
x=1

x · 1

n

=
1

n

n∑
x=1

x

=
1

n

n(n+ 1)

2

=
1 + n

2

To determine the variance,

σ2 =

n∑
x=1

x2 · 1

n
− µ2
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=
1

n

n∑
x=1

x2 −
(

1 + n

2

)2

=
1

n

n(n+ 1)(2n+ 1)

6
− 1 + 2n+ n2

4

=
(2n2 + 3n+ 1)

6
− 1 + 2n+ n2

4

=
(4n2 + 6n+ 2)

12
− 3 + 6n+ 3n2

12

=
(n2 − 1)

12

For skewness,

γ1 =

n∑
x=1

x3 · 1

n
− 3µ

n∑
x=1

x2 · 1

n
+ 2µ3

=
n2(n+ 1)2

4n
− 3

(n(n+ 1)(2n+ 1))

2n

1 + n

2
+ 2

(
1 + n

2

)3

=
n2(n+ 1)2

4n
− (n+ 1)2(n(2n+ 1)

4n
+

(n+ 1)3

4

=
(n+ 1)2

4
[n− 2n− 1 + (n+ 1)]

= 0

which should be obvious since the histogram for this distribution is constantly
flat.

For Kurtosis, use the fourth moment and simplify. This this is tedious, the
algebra is performed using Sage in the active cell below this proof. However,
you might want to supply the remainder of this proof using the fact that

n∑
x=1

x4 =
6n5 + 15n4 + 10n3 − n

30
. �

Sage can also do the algebra for you to determine each of these measures.
Notice, as n increases the Kurtosis approaches 6

5 which indicates that there is
(obviously) no tend toward central tendency over time.

var('x,n')
f = 1/n
mu = sum(x*f,x,1,n).factor ()
pretty_print('Mean␣=␣',mu)
mu = (1+n)/2
v = sum((x-mu)^2*f, x, 1, n)
pretty_print('Variance␣=␣',v.factor ())
stand = sqrt(v)
pretty_print('Skewness␣=␣␣',(sum((x-mu)^3*f, x, 1,

n)/stand ^3))
kurt = sum((x-mu)^4*f, x, 1, n)/stand^4
pretty_print('Kurtosis␣=␣',(kurt -3).factor (),'␣+␣3')

Example 6.2.3 Rolling one die. When you consider rolling a regular, fair,
single 6-sided die, each side is equally likely. The sample space consists of the
6 sides, each with a unique number of physical dots. Let the random variable
X correspond each side with the number corresponding to the number of dots.
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Then, R = 1, 2, 3, 4, 5, 6. Since each side is equally likely then f(x) = 1/6.
Further, the probability of getting an outcome in A=2,3 would be f(2)+f(3) =
1/6 + 1/6 = 2/6. �

6.3 Continuous Uniform Distribution

Modeling the idea of "equally-likely" in a continuous world requires a slightly
different perspective since there are obviously infinitely many outcomes to con-
sider. Instead, you should consider requiring that intervals in the domain which
are of equal width should have the same probability regardless of where they
are in that domain. This behaviour suggests P (u < X < v) = P (u+ ∆ < X <
v + ∆) for reasonable values of ∆ so that the interval remains inside R.
Theorem 6.3.1 Continuous Uniform Probability Function. For R =
[a,b], with a < b, the continuous uniform probability function is given by

f(x) =
1

b− a
.

Proof. From before, for X a continuous uniform variable, we get∫ v

u

f(x)dx =

∫ v+∆

u+∆

f(x)dx

F (v)− F (u) = F (v + ∆)− F (u+ ∆)

F (u+ ∆)− F (u) = F (v + ∆)− F (v)

fracF (u+ ∆)− F (u)∆ =
F (v + ∆)− F (v)

∆

which is true regardless of ∆solongasyoustayinthedomainofinterest.Letting∆→
0 gives

F ′(u) = F ′(v)

but since F is an antiderivative of the probability function,

f(u) = f(v)

for all u and v in R. This only happens if f is constant...say, f(x)=c. If the
space of X is a single interval with R = [a, b] then

1 =

∫ b

a

cdx = c(b− a)

which yields c = 1
b−a as desired. �

Example 6.3.2 Basic Continuous Uniform. On R = [1, 2π],

f(x) =
1

2π − 1
.

Then, if you want to compute something like P (2 < X < 4.5) integrate

P (2 < X < 4.5) =

∫ 4.5

2

1

2π − 1
dx =

2.5

2π − 1

�



6.3. CONTINUOUS UNIFORM DISTRIBUTION 99

Checkpoint 6.3.3 WebWork. This one uses the continuous uniform distri-
bution.

A man and a woman agree to meet at a cafe about noon. If the man arrives
at a time uniformly distributed between 11 : 35 and 12 : 15 and if the woman
independently arrives at a time uniformly distributed between 11 : 55 and
12 : 45, what is the probability that the first to arrive waits no longer than 15
minutes?
Example 6.3.4 Continuous Uniform over two disjoint intervals.
Suppose R = [0, 2] ∪ [5, 7]. Then, as in the theorem proof

1 =

∫
R

cdx =

∫ 2

0

cdx+

∫ 7

5

cdx = 4c.

Thus, f(x) = 1
4 . For computing probabilities, you will want to break up any

resulting integrals in a similar manner. �

Theorem 6.3.5 Properties of the Continuous Uniform Probability
Function. For the Continuous Uniform Distribution over R = [a, b], with a
< b,

1. f(x) = 1
b−a satisfies the properties of a probability function over R =

[a,b].

2. µ = a+b
2

3. σ2 = (b−a)2

12

4. γ1 = 0

5. γ2 =
9 (a5−5 a4b+10 a3b2−10 a2b3+5 ab4−b5)(a−b)

5 (a3−3 a2b+3 ab2−b3)2

Proof. We can verify most of these here but you can also determine these
using Sage below.

For the mean,

µ = E[X] =

∫ b

a

x
1

b− a
dx

=
x2

2(b− a)
right|ba

=
b2 − a2

2(b− a)
=
b+ a

2
.

For the variance,

σ2 = E[X2]− µ2 =

∫ b

a

x2 1

b− a
dx− µ2

=
x3

3(b− a)
right|ba −

(
a+ b

2

)2

=
b3 − a3

3(b− a)
− a2 + 2ab+ b2

4

=
4b2 + 4ab+ 4a2 − 3a2 − 6ab− 3b2

12

=
b2 − 2ab+ a2

12
=

(b− a)2

12
.
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For the skewness,

γ0 = E[X3]− 3µE[X2] + 2µ3

=

∫ b

a

x3 1

b− a
dx− 3µ

b3 − a3

3(b− a)
+ 2

(
a+ b

2

)3

=
x4

4(b− a)
right|ba − 3

a+ b

2
· b

3 − a3

3(b− a)
+ 2

a3 + 3a2b+ 3ab2 + b3

8

= a miracle of algebra
= 0.

The variance is more algebra like above. We will just let Sage do that part
for us below. �

# Continous uniform distribution statistics derivation
reset()
var('x,a,b')
f = 1/(b-a)
mu = integrate(x*f,x,a,b).factor ()
pretty_print('Mean␣=␣',mu)

v = integrate ((x-mu)^2*f, x, a, b)
pretty_print('Variance␣=␣',v.factor ())
stand = sqrt(v)

sk = (integrate ((x-mu)^3*f, x, a, b)/stand ^3)
pretty_print('Skewness␣=␣␣',sk)

kurt = (integrate ((x-mu)^4*f, x, a, b)/stand ^4)
pretty_print('Kurtosis␣=␣',kurt)

pretty_print('Several␣Examples ')
a1=0
for b1 in range (2,7):

pretty_print('Using␣[',a1,',',b1,']:')
pretty_print('␣␣␣␣mean␣=␣',mu(a=a1,b=b1))
pretty_print('variance␣=␣',v(a=a1,b=b1))
pretty_print('skewness␣=␣',sk(a=a1,b=b1))
pretty_print('kurtosis␣=␣',kurt(a=a1,b=b1))

Example 6.3.6 Occurence of exactly one event randomly in a given
interval. Suppose you know that only one person showed up at the counter
of a local business in a given 30 minute interval of time. Then, R=[0,30] given
f(x) = 1/30.
Further, the probability that the person arrived within the first 6 minutes
would be

∫ 6

0
1
30dx = 0.2. �

Theorem 6.3.7 Distribution Function for Continuous Uniform. For
x ∈ [a, b], F (x) = x−a

b−a

Proof. For x in this range,

F (x) =

∫ x

a

1

b− a
du =

u

b− a
∣∣x
a

=
x− a
b− a

. �
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6.4 Hypergeometric Distribution
For the discrete uniform distribution, the presumption is that you will be
making a selection one time from the collection of items. However, if you
want to take a larger sample without replacement from a distribution in which
originally all are equally likely then you will end up with something which will
not be uniform.

Indeed, consider a collection of n items from which you want to take a
sample of size r without replacement. If n1 of the items are "desired" and the
remaining n2 = n−n1 are not, let the random variable X measure the number
of items from the first group in your sample with R = {0, 1, ...,minr, n1}. The
resulting collection of probabilities is called a Hypergeometric Distribution.
Theorem 6.4.1 Hypergeometric Probability Function. For a Hyper-
geometric random variable with R = 0, 1, ..., r and assuming n1 ≥ r and
n− n1 ≥ r,

f(x) =

(
n1

x

)(
n−n1

r−x
)(

n
r

)
Proof. For the following, we will presume thatSince you are sampling without
replacement and trying only measure the number of items from your desired
group in the sample, then the space of X will include R = 0, 1, ..., r assuming
n1 ≥ r and n− n1 ≥ r. In the case when r is too large for either of these, the
formulas below will follow noting that binomial coefficients are zero if the top
is smaller than the bottom or if the bottom is negative.

So f(x) = P(X = x) = P(x from the sample are from the target group and
the remainder are not). Breaking these up gives

f(x) =

(
n1

x

)(
n−n1

r−x
)(

n
r

) �

For example, suppose that you have a bag of assorted candies but you really
prefer the little dark chocolate bars. Because you are obsessive, you first empty
the whole bag onto your desk and discover that the bag contains 33 equally-
sized candy bars of which 6 of them are your delightful dark chocolate bars.
Putting the bars randomly back into the bag, you find that a friend’s friend’s
friend walks into the room and grabs a handful of 5 candy bars from your bag.
You are shocked and would like to know the probability that this person got 2
or more of your dark chocolate candy bars.

As a good prob/stats student you recognize that this situation fits the
requirements of the hypergeometric distribution with n1 = 6, n2 = 27, r = 5
and you want P (X ≥ 2). You determine that it would be easier to compute
the complement

1− P (X ≤ 1) = 1− f(0)− f(1).
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Therefore,

P (X ≥ 2) = 1−
(

6
0

)(
27
5

)(
33
5

) −
(

6
1

)(
27
4

)(
33
5

)
or after some simplification

P (X ≥ 2) = 1− 13455

39556
− 8775

19778
≈ 0.21617

Therefore, you have about 1 chance out of 5 that the friend got 2 or more of
your bars. You can be somewhat confident that plenty of dark chocolate bars
remain hoarded for yourself.
Theorem 6.4.2 Properties of the Hypergeometric Distribution.

1. f(x) =
(n1
x )(n−n1

r−x )
(nr)

satisfies the properties of a probability function.

2. µ = rn1

n

3. σ2 = rn1

n
n2

n
n−r
n−1

4. γ1 = (n−2n1)
√
n−1(n−2r)

rn1(n−n1)
√
n−r(n−2)

5. γ2 = n(n+1)−6n(n−r)
n1(n−n1) + 3r(n−r)(n+6)

n2 − 6

Proof.

1.
n∑
x=0

(
n

x

)
yx = (1 + y)n, by the Binomial Theorem

= (1 + y)n1 · (1 + y)n2

=

n1∑
x=0

(
n1

x

)
yx ·

n2∑
x=0

(
n2

x

)
yx

=

n∑
x=0

r∑
t=0

(
n1

r

)(
n2

r − t

)
yx

Equating like coefficients for the various powers of y gives(
n

r

)
=

r∑
t=0

(
n1

r

)(
n2

r − t

)
.

Dividing gives

1 =

r∑
x=0

f(x).

2. For the mean
n∑
x=0

x

(
n1

x

)(
n−n1

r−x
)(

n
r

) =
1(
n
r

) n∑
x=1

n1(n1 − 1)!

(x− 1)!(n1 − x)!

(
n− n1

r − x

)

=
n1(
n
r

) n∑
x=1

(n1 − 1)!

(x− 1)!((n1 − 1)− (x− 1))!

(
n− n1

r − x

)

=
n1

n(n−1)!
r!(n−r)!

n∑
x=1

(
n1 − 1

x− 1

)(
n− n1

r − x

)
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Consider the following change of variables for the summation:

y = x− 1

n3 = n1 − 1

s = r − 1

m = n− 1

Then, this becomes

µ =

n∑
x=0

x

(
n1

x

)(
n−n1

r−x
)(

n
r

) = r
n1

n

m∑
y=0

(
n3

y

)(
m−n3

s−y
)(

m
s

)
= r

n1

n
· 1

noting that the summation is in the same form as was show yields 1
above.

3. For variance, we will use an alternate form of the definition that is useful
when looking for cancellation options with the numerous factorials in the
hypergeometric probability function. Indeed, you can easily notice that

σ2 = E[X2]− µ2 = E[X2 −X] + E[X]− µ2 = E[X(X − 1)] + µ− µ2.

Since we have µ = rn1

n from above then let’s focus on the first term only
and use the substitutions

y = x− 2

n3 = n1 − 2

s = r − 2

m = n− 2

to get

E[X(X − 1)] =

n∑
x=0

x(x− 1)

(
n1

x

)(
n−n1

r−x
)(

n
r

)
=

n∑
x=2

x(x− 1)

n1!
x(x−1)(x−2)!(n1−x)!

(
n−n1

r−x
)(

n
r

)
=

n∑
x=2

n1!
(x−2)!(n1−x)!

n2!
(r−x)!(n2−r+x)!(
n
r

)
= n1 · (n1 − 1)

n∑
x=2

(n3)!
(x−2)!(n3−(x−2))!

n2!
((r−2)−(x−2))!(n2−(r−2)+(x−2))!(

n
r

)
= n1 · (n1 − 1)

m∑
y=0

(n3)!
y!(n3−y)!

n2!
(s−y)!(n2−s+y)!(
n
r

)
=
n1 · (n1 − 1) · r · (r − 1)

n(n− 1)

m∑
y=0

(
(n3)
y

)(
n2

s−y
)(

m
s

)
=
n1 · (n1 − 1) · r · (r − 1)

n(n− 1)
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where we have used the summation formula above that showed that f(x)
was a probability function.
Putting this together with the earlier formula gives

σ2 =
n1 · (n1 − 1) · r · (r − 1)

n(n− 1)
+ r

n1

n
−
(
r
n1

n

)2

.

4. The proof of kurtosis is even more messy and we won’t bother with
proving it for this distribution!

�

Note, if r=1 then you are back at a regular discrete uniform model. Indeed,

P (desired item) = 1 · n1

n
= µ.

which is indeed what you might expect when selecting once.

N1 = 10
N2 = 16
n = N1+N2
r = 5

X = 0:r # the space R of the random variable
mu = r*N1/n # the formula for mean of the Binomial

Distributions
sdev = sqrt(mu*(N2/n)*(n-r)/(n-1)) # the formula for the

standard deviation
dhyper( X, N1, N2, r ) # let's print out a bunch of actual

probs

Phyper = dhyper(X, N1, N2, r ) # create the probability
function over X

Psample = rhyper (10^6, N1, N2, r) # to create a histogram ,
sample a lot

Xtop=max(Psample) # for scaling the x-axis. Shift
by 1/2 below.

hist(Psample , prob=TRUE , br=(-1: Xtop)+0.5, col="skyblue2",
xlab="X",

main="Hypergeometric␣Probability␣Function␣vs␣Approximating␣
'Bell␣Curve'")

points(X, Phyper , pch=19, col="darkgreen") # to create
actual (x,f(x))

Pnormal <- function(X){dnorm(X, mean=mu, sd=sdev)} # to
overlap a bell curve

curve(Pnormal , col="red", lwd=2, add=TRUE)

Consider the Hypergeometric distribution for various values of n1, n2, and
r using the interactive cell above. Notice what happens when you start with
relatively small values of n1, n2, and r (say, start with n1 = 5, n2 = 8, and r
= 4 and then doubling then all again and again. Consider the likely skewness
and kurtosis of the graph as the values get larger.

In the interactive cell below, notice how many items are in each portion of
the "Venn Bucket" when you change the size of the number extracted–denoted
by what is inside the circle.



6.5. SUMMARY 105

# Hypergeometric distribution over 0 .. N
# Size of classes N1 and N2 must be given as well as subset

size r
var('x')
@interact(layout=dict(top=[['N1','N2','r']]))
def _(N1=input_box (10,width=5,label='\(␣N_1␣\)'),

N2=input_box (10,width=5,label='\(␣N_2␣\)'),
r=input_box(5,width=5,label='\(␣r␣\)')):
N = N1 + N2
f = binomial(N1,x)*binomial(N2,r-x)/binomial(N,r)
@interact
def __(X = slider(0,min(r,N1) ,1)):

Px = f(x=X)
Pxapprox = Px.n(digits =8)
formula =

"\\frac {\\ binom{%s}"%str(N1)+"{%s}"%str(X)+"␣
\\binom{%s}"%str(N2)+"{%s}}"%str(r-X)+"{␣
\\binom{%s}"%str(N)+"{%s}}"%str(r)

pretty_print(html("P(X␣=␣%s"%str(X)+")␣=␣\(␣%s␣
\)"%str(formula)+"␣=␣\(␣%s␣
\)"%str(latex(Px))+"\(␣\\ approx␣%s␣
\)"%str(Pxapprox)))

G = polygon ([(0 ,0), (1,0), (1.2 ,1),
(-.2,1)],color='lightblue ')

G += line ([(0.5 ,0) ,(0.5,1)],thickness =2)
G +=

circle ((0.5 ,0.3) ,0.25,fill=True ,facecolor='yellow ',alpha =0.5, zorder =2)
G += text("Things␣I␣

want" ,(0.2 ,0.9))+text("Everything␣
else" ,(0.8 ,0.9))

G += text("%s"%X,(0.4 ,0.3),fontsize =30) +
text("%s"%(r-X) ,(0.6 ,0.3),fontsize =30)

G += text("%s"%(N1-X) ,(0.1 ,0.5),fontsize =30) +
text("%s"%(N2 -(r-X)) ,(0.9 ,0.5),fontsize =30)

show(G, axes=0, figsize =(4,4) )

6.5 Summary
Here is a summary of the major formulas from this chapter:

Discrete Uniform f(x)
Discrete Uniform statistics
Continuous Uniform f(x)
Continuous Uniform statistics
Hypergeometric f(x)
Hypergeometric statistics

6.6 Exercises
Checkpoint 6.6.1 - The Proverbial Urn Problem. You have an urn with
10 marbles of which n1 = 6 are red and N2 = 4 are blue. You select randomly
r = 3 of the marbles without replacement and let X represent the number of
red marbles in your sample. With R = 0, 1, 2, 3, determine:

• f(x)

• P(2 of the 3 are red) = f(2)
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• P(at most 2 of the 3 are red) = f(0) + f(1) + f(2)

Hint. This is hypergeometric using

f(x) =

(
6
x

)(
4

3−x
)(

10
3

) .

Checkpoint 6.6.2 - Playing Cards. You randomly select a hand of five
cards without replacement from an ordinary deck of playing cards.

• Determine the probability that four of the five are spades.

• Determine the probability that three of the five are face cards (ie, Jacks,
Queens, Kings).

Hint. This exercise is actually two different hypergeometric distributions:
the first is the 13 spades vs the 39 other cards and the second is the 12 face
cards vs the 40 other cards.
Solution. (

13
4

)(
39
1

)(
52
5

)
(

12
3

)(
40
2

)(
52
5

)
Checkpoint 6.6.3 - Starting Seniors. You are picking an eleven member
football starting team by picking randomly from a group with 15 seniors and
35 others. Determine:

• P(all seniors)

• P(exactly 6 seniors)

• the expected number of seniors on the team

• If your team has all seniors, explain whether someone could suggest that
your decision on members was unfair

Hint. This is a hypergeometric distribution with n1 = 15, n2 = 35, r = 11.
Checkpoint 6.6.4 - Old Faithful. Ole Faithful geyser in Yellowstone
National Park erupts every 91 minutes. You show up at some random time in
the eruption cycle and your tour bus plans to stay for 25 minutes. Determine
the likelihood that you will be able to see it erupt. Express your answer by
giving correct formulas for f(x) and F(x) and then determine the specific answer
to this question.
Hint. This is the continuous uniform distribution over R = [0, 91].
Checkpoint 6.6.5 - Uniform Scenarios. Explain how the following situa-
tions can be modeled using either a discrete or continuous uniform distribution
by identifying the space R and the corresponding f(x) for each situation.

• The location on a prize wheel where the spun wheel will stop.

• Given a clock with only a minute hand, the current one second interval.

• The location on a automobile tire where the next puncture will occur.
Checkpoint 6.6.6 - Continous Uniform on a different space. Determine
an explicit formula for f(x) and the mean and variance for an continuous uni-
form distribution over R = [−2, 3] ∪ [5, 6] ∪ [9, 15].
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Solution. Since you must have∫
x∈R

f(x)dx = 1

and since f(x) must be constant than all you must do is measure the accumu-
lated width of the intervals in R. This is 5 + 1 + 6 = 12 and so

f(x) =


1
12 , −2 ≤ x ≤ 3
1
12 , 5 ≤ x ≤ 6
1
12 , 9 ≤ x ≤ 15

0, otherwise

For the mean, ∫
x∈R

x
1

12
dx =

∫ 3

−2

x

12
dx+

∫ 6

5

x

12
dx+

∫ 15

9

x

12
dx

=
9− 4

24
+

36− 25

24
+

225− 81

24

=
5 + 11 + 144

24
=

160

24
=

20

3
.

For the variance,∫
x∈R

x2 1

12
dx− µ2 =

∫ 3

−2

x2

12
dx+

∫ 6

5

x2

12
dx+

∫ 15

9

x2

12
dx− µ2

=
81 + 8

36
+

216− 125

36
+

3375− 729

36
−
(20

3

)2
=

89 + 91 + 2646

36
− 400

9
=

2826− 1600

36

=
1226

36
≈ 34.055.

Checkpoint 6.6.7 - Louisiana Mega Millions Lottery. To play the Mega
Millions Louisiana Lottery consists of picking five numbers from 1 to 75 and one
yellow Mega Ball number from 1 through 15. (You can play up to five different
sets of numbers on each playslip but we will just assume one play per ticket to
keep things straight.) Each play costs 1andyoucanpayanadditional1 to apply a
"multiplier" which multiplies any non-Jackpot prize by the Multiplier number
(2, 3, 4, or 5) randomly selected at the time of the drawing.
On October 10, 2016 the jackpots listed were

• Match 5 plus Mega ball = Jackpot of
49, 000, 000withcashvalueof32,600,000

• Match only 5 = 1, 000, 000Match4plusMegaball =5,000

•• Match only 4 =500Match3plusMegaball =50

•• Match only 3 = 5Match2plusMegaball =5

•• Match 1 plus Mega ball = 2MatchonlytheMegaball =1

Verify the posted odds

•• Match 5 plus Mega ball = 1 in 258,890,850

• Match only 5 = 1 in 18,492,204

• Match 4 plus Mega ball = 1 in 739,688
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• Match only 4 = 1 in 52,835

• Match 3 plus Mega ball = 1 in 10,720

• Match only 3 = 1 in 766

• Match 2 plus Mega ball = 1 in 473

• Match 1 plus Mega ball = 1 in 56

• Match only the Mega ball = 1 in 21

Determine the expected payout for each ticket purchased. Also, determine
what the Jackpot would need to be in order for the game to be considered
"fair" with an expected value of zero.
Solution. Throughout these calculations, you can presume that the first five
numbers are selected independently from the Mega Ball number. However, the
first five numbers are selected without replacement so computing probabilities
with those does not allow for independence. This part is hypergeometric with
the n1 = 5 numbers you selected being the "desired" numbers and the Lottery
Commission picking a subset of size r = 5 from the 75 possible numbers. So,
your likelihood of matching all five would be(

5
5

)
·
(

70
0

)(
75
5

) =
1

17259390
.

Multiplying this by the 1 chance in 15 that you also match the Mega Ball gives

P (Match 5 plus Mega Ball) =
1

17259390
· 1

15
=

1

258, 890, 850
.

To match only 5 means you also MUST miss the Mega Ball which has proba-
bility 14/15 to give

1

17259390
· 14

15
=

1

17259390 · 15
14

≈ 1

18492204
.

Continue in this manner to determine the other odds.
For the expected earnings, first determine a value function corresponding to
each outcome and apply the discrete expected value process. This gives

$32600000 · 1

258, 890, 850
+ $1000000 · 1

18, 492, 204

+ $5000 · 1

739, 688
+ $500 · 1

52, 835

+ $50 · 1

10, 720
+ $5 · 1

766

+ $5 · 1

473
+ $2 · 1

56
+ $1 · 1

21
≈ $0.3013.

So, the expected payout is approximately
30 cents. Subtracting the cost of playing
(1)indicatesthattheaveragewinningsperplayoftheLouisianaLotterywouldbe−
70cents.So, youwouldbebetterofftotake, say, 50centsandjustgiveittothelocalschoolsystemeverytimeyouconsiderplayingthisgameratherthanactuallyplaying.
To determine the Jackpot A needed to make this a fair game means to solve
the equation

A · 1

258, 890, 850
+ $1000000 · 1

18, 492, 204
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+ $5000 · 1

739, 688
+ $500 · 1

52, 835

+ $50 · 1

10, 720
+ $5 · 1

766

+ $5 · 1

473
+ $2 · 1

56
+ $1 · 1

21
= 1

for A.
Finally, to deal with the multiplier, note that all but the Jackpot payouts would
be increased by the multiplier m where m ∈ {1, 2, 3, 4, 5}. For the cost of an
extra 1(totalcostof2 per bet) the expected payout increases as the multiplier
increases but each of these decreases likelihood of winning that payout by a
factor of 1/5. In general, let x = 1, 2, ..., 9 indicate the various winning options
in order listed above, f(x) the corresponding probabilities listed for each option,
and u(x) the listed payouts. Then the expected payout is given by

$32600000 · 1

258, 890, 850
+

5∑
m=1

9∑
x=2

m · u(x)f(x)/5

or

$32600000 · 1

258, 890, 850
+

5∑
m=1

m

5

9∑
x=2

u(x)f(x)

=
$32600000

258890850
+

5∑
m=1

m

5
0.17539

= 0.12592 + 3 · 0.17539

= 0.65209

Therefore, the expect value of spending another
dollar to get the multiplier effect is about -
1.35.Sincethisisslightlylessthandoublingtheexpectedlossof70centsforplayingwithoutthemultiplierwith1,
it make more sense to bet 2onceratherthanbetting1 twice. Or, you can send
the extra nickel to this author of this text and call it quits.
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Chapter 7

Distributions based upon
Bernoulli Trials

7.1 Introduction

Many practical problems involve measuring simply whether something was a
success or a failure. In these situations, "success" should not be interpreted
as having any moral or subjective meaning but only construed to mean that
something you are looking for actually occurs.

In situation where a single trial is performed and the result is determined
only to be a success or failure is called a Bernoulli event. Indeed, one could
create a corresponding probability function using a random variable X over the
space R = {0, 1} mapping X(success) = 1 and X(failure)=0. If p = P(success)
then

f(x) = px · (1− p)1−x

would be a formula but which only related to two values P(failure) = f(0) =
(1-p) and P(Success) = f(1) = p.

Notice that p=0 means that you will always get a failure and that p=1
means that you will always get a success. In these cases, X would no longer be
a random variable since the outcome for X could be predicted with certainty.
Therefore, we will always assume that 0 < p < 1.

The Bernoulli distribution on its own is not extremely useful but serves as
a starting point for several others that are useful. Indeed, in this chapter you
will investigate distributions that relate some number of successes in multiple
trials to some number of independent trials. The difference between these
distributions will be that one of these variables will be fixed and the other one
will be variable.

In this chapter, you will investigate the following distributions:

1. Binomial - the number of trials is fixed and X measures the variable
number of successes

2. Geometric - the number of successes is fixed–at 1–and X measures the
variable number of trials

3. Negative Binomial - the number of successes is fixed and X measures the
variable number of trials

111



112CHAPTER 7. DISTRIBUTIONS BASED UPON BERNOULLI TRIALS

7.2 Binomial Distribution

Consider a sequence of n independent Bernoulli trials with the likelihood of
a success p on each individual trial stays constant from trial to trial with
0 < p < 1. If we let the variable X measure the number of successes obtained
when doing a fixed number of trials n with R = {0, 1, ..., n}, then the resulting
distribution of probabilities is called a Binomial Distribution.

Now, let’s determine the actual probability function for this distribution.
Theorem 7.2.1 Derivation of Binomial Probability Function. For R
= 0, 1, ..., n,

f(x) =

(
n

x

)
px(1− p)n−x

Proof. Since successive trials are independent, then the probability of X
successes occurring within n trials is given by

P (X = x) =

(
n

x

)
P (SS...SFF...F ) =

(
n

x

)
px(1− p)n−x �

Theorem 7.2.2 Verification of Binomial Distribution Formula.∑
x∈R

f(x) =

n∑
x=0

(
n

x

)
px(1− p)n−x = 1.

Proof. Using the Binomial Theorem with a = p and b = 1-p yields

n∑
x=0

(
n

x

)
px(1− p)n−x = (p+ (1− p))n = 1 �

The following interactive cell illustrates the range of choices for a Binomial
setup with fixed N and fixed p:

# Binomial distribution over 0 .. N
# N and p need to be given
var('x')
@interact(layout=dict(top=[['N','p']]))
def _(N=input_box (10,width=5,label='\(␣N␣\)'),

p=input_box (3/10, width=5,label='\(␣p␣\)')):
f = binomial(N,x)*p^x*(1-p)^(N-x)
@interact
def __(X = slider(0,N,1)):

Px = f(x=X)
Pxapprox = Px.n(digits =8)
formula =

"\\binom{%s}"%str(N)+"{%s}"%str(X)+"({%s})"%str(p)+"^{%s}"%str(X)+"(1-{%s})"%str(p)+"^{%s}"%str(N-X)
pretty_print(html("P(X␣=␣%s"%str(X)+")␣=␣\(␣%s␣

\)"%str(formula)+"␣=␣\(␣%s␣
\)"%str(latex(Px))+"\(␣\\ approx␣%s␣
\)"%str(Pxapprox)))

G = polygon ([(0 ,0), (1,0), (1,1),
(0,1)],thickness =10,color='blue',alpha =0.7, zorder =1)

if X > 0:
R =[j for j in range(N)]
selected = sample(R, X)
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for k in selected:
xk = sqrt(k)*cos(k)/N^(4/5) +0.5
yk = sqrt(k)*sin(k)/N^(4/5) +0.5
G +=

circle ((xk,yk) ,0.05,fill=True ,facecolor='red',zorder =3)
G += text('p',(xk,yk))

for k in range(N):
xk = sqrt(k)*cos(k)/N^(4/5) +0.5
yk = sqrt(k)*sin(k)/N^(4/5) +0.5
G += circle ((xk,yk) ,0.05, zorder=2,fill=True ,

facecolor="white")

show(G, axes=0, figsize =(4,4) )

Example 7.2.3 Flipping a coin a fixed number of times. Let’s consider
a simple example for flipping coins. Indeed, suppose you flip a coin exactly 20
times and need to determine the probability of getting exactly 10 heads.
This is binomial with n = 20, p = 1/2 and you are looking for f(10). With
these values

f(10) =

(
20

10

)
·
(

1

2

)10

·
(

1

2

)20−10

=
46189

262144
≈ 0.176

Note that the mean for this distribution is also 10 so one might expect 10 heads
in general
If you rather would prefer to determine the probability of getting 10 or fewer
heads requires F(10) = f(0) + f(1) + ... + f(10). There is no "nice" formula for
F but this calculation can be performed using a graphing calculator, such as the
TI-84 with F(x) = binomcdf(n,p,x). In this case, F(10) = binomcdf(20,1/2,10)
= 0.588. �
Checkpoint 7.2.4 WebWork. This one uses the binomial distribution.

A coin is tossed 14 times.
a) How many different outcomes are possible?
b) What is the probability of getting exactly 6 heads?
c) What is the probability of getting at least 2 heads?
d) What is the probability of getting at most 10 heads?
Example 7.2.5 Testing critical components. Often one will test a critical
system components for failure and toward that end collect a sample of 100 of
these components from the manufacturer. Suppose the component is listed as
having a p=0.01 probability of breaking and you want to know the likelihood
that at most 1 of the tested components actually fails when tested. You find it
reasonable to presume that different components succeed or fail independently
of each other. So, you can model this situation with a binomial distribution.
If X measures the number of components that fail when tested, the specific
probability function is given by

f(x) =

(
100

x

)
0.01x0.99100−x.

The probability that at most one component fails is then given by

F (1) = f(0)+f(1) =

(
100

0

)
0.0100.99100+

(
100

1

)
0.0110.9999 = 0.99100+100·0.01·0.9999 = 0.9999(0.99+100·0.01 = 0.9999·1.99 ≈ 0.73576.

�
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Utilize the interactive cell below to compute f(x) and F(x) for the Binomial
distribution

# Binomial calculator
@interact
def _(p=input_box (3/10, width =15),n=input_box (10,width =15)):

R = range(n+1)
f(x) = binomial(n,x)*p^x*(1-p)^(n-x)
acc = 0
pretty_print("Binomial␣Calculator")
for k in R:

prob = f(x=k)
acc = acc+prob
pretty_print('f(%s)␣=␣'%k,'␣%.8f'%prob ,'␣and␣F(%s)␣=␣

'%k,'␣%.8f'%acc)

Theorem 7.2.6 Binomial Distribution Statistics. For the Binomial
Distribution

µ = np

σ2 = np(1− p)

γ1 =
1− 2p√
np(1− p)

γ2 =
1− 6p(1− p)
np(1− p)

+ 3

Proof. For the mean,

µ = E[X]

=

n∑
x=0

x

(
n

x

)
px(1− p)n−x

=

n∑
x=1

x
n(n− 1)!

x(x− 1)!(n− x)!
px(1− p)n−x

= np

n∑
x=1

(n− 1)!

(x− 1)!((n− 1)− (x− 1))!
px−1(1− p)(n−1)−(x−1)

Using the change of variables k = x− 1 and m = n− 1 yields a binomial series

= np

m∑
k=0

m!

k!(m− k)!
pk(1− p)m−k

= np(p+ (1− p))m = np

For the variance,

σ2 = E[X(X − 1)] + µ− µ2

=

n∑
x=0

x(x− 1)

(
n

x

)
px(1− p)n−x + np− n2p2

=

n∑
x=2

x(x− 1)
n(n− 1)(n− 2)!

x(x− 1)(x− 2)!(n− x)!
px(1− p)n−x + np− n2p2

= n(n− 1)p2
n∑
x=2

(n− 2)!

(x− 2)!((n− 2)− (x− 2))!
px−2(1− p)(n−2)−(x−2) + np− n2p2
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Using the change of variables k = x − 2 and m = n − 2 yields a binomial
series

= n(n− 1)p2
m∑
k=0

m!

k!(m− k)!
pk(1− p)m−k + np− n2p2

= n(n− 1)p2 + np− n2p2 = np− np2 = np(1− p)

The skewness and kurtosis can be found similarly using formulas involv-
ing E[X(X-1)(X-2)] and E[X(X-1)(X-2)(X-3)]. The complete determination is
performed using Sage below. �

The following uses Sage to symbolically confirm the general formulas for
the Binomial distribution.

var('x,n,p')
assume(x,'integer ')
f(x) = binomial(n,x)*p^x*(1-p)^(n-x)
mu = sum(x*f,x,0,n)
M2 = sum(x^2*f,x,0,n)
M3 = sum(x^3*f,x,0,n)
M4 = sum(x^4*f,x,0,n)

pretty_print('Mean␣=␣',mu)

v = (M2-mu^2).factor ()
pretty_print('Variance␣=␣',v)
stand = sqrt(v)

sk = ((M3 - 3*M2*mu + 2*mu^3)).factor ()/stand^3
pretty_print('Skewness␣=␣',sk)

kurt = (M4 - 4*M3*mu + 6*M2*mu^2 -3*mu^4).factor ()/stand^4
pretty_print('Kurtosis␣=␣',(kurt -3).factor (),'+3')

Checkpoint 7.2.7 WebWork. This one uses the binomial distribution.

The Census Bureau reports that 82% of Americans over the age of 25 are high
school graduates. A survey of randomly selected residents of certain county
included 1370 who were over the age of 25, and 1074 of them were high school
graduates.
(a) Find the mean and standard deviation for the number of high school
graduates in groups of 1370 Americans over the age of 25.
Mean =
Standard deviation =
(b) Is that county result of 1074 unusually high, or low, or neither?
(Enter HIGH or LOW or NEITHER)

n = 10
p = 0.3
X = 0:n # the space R of the random variable
mu = n*p # the formula for mean of the Binomial

Distributions
sdev = sqrt(n*p*(1-p)) # the formula for the standard

deviation
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if(n < 101){
dbinom( X, n, p ) # let's print out a bunch of actual

probs if N reasonable
}

Pbinom = dbinom(X, n, p ) # create the probability function
over X

Psample = rbinom (10^6, n, p) # to create a histogram ,
sample a lot

Xtop=max(Psample) # for scaling the x-axis. Shift
by 1/2 below.

hist(Psample , prob=TRUE , br=(-1: Xtop)+0.5, col="skyblue2",
xlab="X",

main="Binomial␣Probability␣Function␣vs␣Approximating␣'Bell␣
Curve '")

points(X, Pbinom , pch=19, col="darkgreen") # to create
actual (x,f(x))

Pnormal <- function(X){dnorm(X, mean=mu, sd=sdev)} # to
overlap a bell curve

curve(Pnormal , col="red", lwd=2, add=TRUE)

You can of course get specific values and graph the Binomial Distribution
using R as well...

n <- 10
p <- 0.3

paste('Probability␣Function ')
dbinom (0:n, n, p) # gives the probability function
paste('Distribution␣function ')
pbinom (0:n, n, p) # gives the distribution function
paste('A␣random␣sample ')
rbinom (15, n, p) # gives a random sample of 15 items from

b(n,p)

x <- dbinom (0:n, size=n, prob=p)
barplot(x,names.arg=0:n, main=sprintf(paste('n=',n,'␣and␣p=␣

',p)))

7.3 Geometric Distribution
Consider the situation where one can observe a sequence of independent trials
where the likelihood of a success on each individual trial stays constant from
trial to trial. Call this likelihood the probably of "success" and denote its
value by p where 0 < p < 1. If we let the variable X measure the number of
trials needed in order to obtain the first success with R = {1, 2, 3, ...}, then the
resulting distribution of probabilities is called a Geometric Distribution.
Theorem 7.3.1 For a Geometric variable X with R = {1, 2, 3, ...},

f(x) = (1− p)x−1 · p

Proof. Since successive trials are independent, then the probability of the first
success occurring on the mth trial presumes that the previous m-1 trials were
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all failures. Therefore the desired probability is given by

f(x) = P (X = x) = P (FF...FS) = (1− p)x−1p �

Example 7.3.2 Flipping a die until getting a success. Let’s consider a
simple example for rolling a 24-sided die until you get a multiple of 9...that is,
either a 9 or an 18. Successive rolls of a die would appear to be independent
events and the probability of getting a 9 or 18 on any given roll is p = 1

12 .
What is then the likelihood that it takes more than three rolls in order for you
to get your first success?
This is easily modeled by a geometric distribution and you are looking for

P (X > 3) = 1−P (X ≤ 3) = 1−F (3) = 1−f(1)−f(2)−f(3)1− 1

12
−11

12
· 1

12
−(

11

12
)2 1

12
≈ 0.77025.

�
Example 7.3.3 Testing a critical component until failure. Often one
will test a critical system component until it fails to see how long the component
works. Suppose you have a particular component that on any given trial has a
p=0.01 probability of breaking. You also might find it reasonable to presume
that succesive trials are independent which could be the case if the component
shows no wear from trial to trial. So, you can model this situation with a
geometric distribution and the probability that the component fails on the
x-th trial is given by

f(x) = 0.99x−1 · 0.01.

For some reason, you might be interested in whether the component fails on
the 5th trial. The probability of this outcome is given by

f(5) = 0.994 · 0.01 ≈ 0.0096

so it is unlikely that the component will fail on exactly the 5th trial. However,
what about failing on one of the first five trials? Then, you would need

F (5) = f(1)+f(2)+f(3)+f(4)+f(5) = 0.01+0.99·0.01+0.992·0.01+0.993·0.01+0.994·0.01 ≈ 0.049

which is still relatively small. Indeed, with such a small probability of failure,
you might expect the component to last for some time. Indeed, we will uncover
a formula below for the number of trials, on average, you might expect before
failure. �

Let’s go ahead and verify this probability function and investigate some of
the geometric distribution’s properties.
Theorem 7.3.4 Geometric Distribution sums to 1.

f(x) = (1− p)x−1p

sums to 1 over R = {1, 2, ...}

Proof.

∞∑
x=1

f(x) =

∞∑
x=1

(1− p)x−1p = p

∞∑
j=0

(1− p)j = p
1

1− (1− p)
= 1

using a change of variables j = x-1 and the known value for the sum of the
geometric series. �
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# Geometric distribution over 0 .. n
# Probability of success on one independent trial = p must

also be given
var('x')
# n = 50 by default. actually should be infinite
@interact
def _(p=input_box (0.1, label='p␣=␣'),n=[25 ,50 ,75 ,100 ,200]):

np1 = n+1
R = range(1,np1)
f(x) = (1-p)^(x-1)*p
F(x) = 1 - (1-p)^x
pretty_print(html('Density␣Function:␣$f(x)␣

=%s$'%str(latex(f(x)))+'␣over␣the␣space␣$R␣=␣
%s$'%str(R)))

points ((k,f(x=k)) for k in R).show(title="Probability␣
Function")

print
points ((k,F(x=k)) for k in R).show(title="Distribution␣

Function")
if (n == 25):

for k in R:
pretty_print(html('$f(%s'%k+')␣=␣

%s'%latex(f(x=k))+'␣\\ approx␣
%s$'%f(x=k).n(digits =5)))

Theorem 7.3.5 Geometric Statistics Theorem. For the geometric dis-
tribution,

µ = 1/p

σ2 =
1− p
p2

γ1 =
2− p√
1− p

γ2 =
p2 − 6p+ 6

1− p
+ 3

Proof. For the mean,

µ = E[X] =

∞∑
x=1

x(1− p)x−1p

= p

∞∑
x=1

x(1− p)x−1

= p
1

(1− (1− p))2

= p
1

p2
=

1

p

For the variance,

σ2 = E[X(X − 1)] + µ− µ2

=

∞∑
x=1

x(x− 1)(1− p)x−1p+ µ− µ2

= (1− p)p
∞∑
x=2

x(x− 1)(1− p)x−2 +
1

p
− 1

p2
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= (1− p)p 2

(1− (1− p))3
+

1

p
− 1

p2

=
1− p
p2

�

Theorem 7.3.6 Geometric Distribution Function.

F (x) = 1− (1− p)x

Proof. Consider the accumulated probabilities over a range of values...

P (X ≤ x) = 1− P (X > x)

= 1−
∞∑

k=x+1

(1− p)k−1p

= 1− p (1− p)x

1− (1− p)
= 1− (1− p)x �

Theorem 7.3.7 Statistics for Geometric Distribution. Mean, Variance,
Skewness, Kurtosis computed by Sage.

Proof. See the interactive Sage cell below... �

var('x,n,p')
assume(x,'integer ')
f(x) = p*(1-p)^(x-1)
mu = sum(x*f,x,0,oo).full_simplify ()
M2 = sum(x^2*f,x,0,oo).full_simplify ()
M3 = sum(x^3*f,x,0,oo).full_simplify ()
M4 = sum(x^4*f,x,0,oo).full_simplify ()

pretty_print('Mean␣=␣',mu)

v = (M2-mu^2).factor ().full_simplify ()
pretty_print('Variance␣=␣',v)
stand = sqrt(v)

sk = (((M3 - 3*M2*mu + 2*mu^3))/stand ^3).full_simplify ()
pretty_print('Skewness␣=␣',sk)

kurt = (M4 - 4*M3*mu + 6*M2*mu^2 -3*mu^4).factor ()/stand^4
pretty_print('Kurtosis␣=␣',(kurt -3).factor (),'+3')

Theorem 7.3.8 The Geometric Distribution yields a memoryless
model.. If X has a geometric distribution and a and b are nonnegative integers,
then

P (X > a+ b|X > b) = P (X > a)

Proof. Using the definition of conditional probability,

P (X > a+ b|X > b) =
P (X > a+ b ∩X > b)

P (X > b)

=
P (X > a+ b)

P (X > b)
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=
(1− p)a+b

(1− p)b

= (1− p)a

= P (X > a) �

7.4 Negative Binomial

Consider the situation where one can observe a sequence of independent trials
where the likelihood of a success on each individual trial stays constant from
trial to trial. Call this likelihood the probably of "success" and denote its
value by p where 0 < p < 1. If we let the variable X measure the number
of trials needed in order to obtain the rth success, r ≥ 1, with R = {r, r +
1, r+2, ...} then the resulting distribution of probabilities is called a Geometric
Distribution.

Note that r=1 gives the Geometric Distribution.
Theorem 7.4.1 Negative Binomial Series.

1

(a+ b)n
=

∞∑
k=0

(−1)k
(
n+ k − 1

k

)
akb−n−k

Proof. First, convert the problem to a slightly different form: 1
(a+b)n =

1
bn

1
( ab+1)n = 1

bn

∑∞
k=0 (−1)k

(
n+k−1

k

) (
a
b

)k
So, let’s replace a

b = x and ignore for a while the term factored out. Then,
we only need to show

∞∑
k=0

(−1)k
(
n+ k − 1

k

)
xk =

(
1

1 + x

)n
However (

1

1 + x

)n
=

(
1

1− (−x)

)n
=

( ∞∑
k=0

(−1)kxk

)n

This infinite sum raised to a power can be expanded by distributing terms
in the standard way. In doing so, the various powers of x multiplied together
will create a series in powers of x involving x0, x1, x2, .... To detemine the
final coefficients notice that the number of time mk will appear in this product
depends upon the number of ways one can write k as a sum of nonnegative
integers.

For example, the coefficient of x3 will come from the n ways of multiplying
the coefficients x3, x0, ..., x0 and x2, x1, x0, ..., x0 and x1, x1, x1, x0, ..., x0. This
is equivalent to finding the number of ways to write the number k as a sum of
nonnegative integers. The possible set of nonnegative integers is 0,1,2,...,k and
one way to count the combinations is to separate k *’s by n-1 |’s. For example,
if k = 3 then *||** means x1x0x2 = x3. Similarly for k = 5 and |**|*|**| implies
x0x2x1x2x0 = x5. The number of ways to interchange the identical *’s among
the idential |’s is

(
n+k−1

k

)
.

Furthermore, to obtain an even power of x will require an even number of
odd powers and an odd power of x will require an odd number of odd powers.
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So, the coefficient of the odd terms stays odd and the coefficient of the even
terms remains even. Therefore,(

1

1 + x

)n
=

∞∑
k=0

(−1)k
(
n+ k − 1

k

)
xk

Similarly, (
1

1− x

)n
=

( ∞∑
k=0

xk

)n
=

∞∑
k=0

(
n+ k − 1

k

)
xk �

Consider the situation where one can observe a sequence of independent
trials with the likelihood of a success on each individual trial p where 0 < p <
1. For a positive integer r, let the variable X measure the number of trials
needed in order to obtain the rth success. Then the resulting distribution of
probabilities is called a Negative Binomial Distribution.
Theorem 7.4.2 Negative Binomial Probability Function.

f(x) =

(
x− 1

r − 1

)
(1− p)x−rpr,

for x ∈ R = {r, r + 1, ...}.

Proof. Since successive trials are independent, then the probability of the rth
success occurring on the x-th trial presumes that in the previous x-1 trials were
r-1 successes and x-r failures. You can arrange these indistinguishable successes
(and failures) in

(
x−1
r−1

)
unique ways. Therefore the desired probability is given

by

P (X = x) =

(
x− 1

r − 1

)
(1− p)x−rpr �

Example 7.4.3 Flipping a die until getting a third success. Once
again, consider rolling our 24-sided die until you get a multiple of 9...that is,
either a 9 or an 18...for the third time. Once again, the probability of getting
a 9 or 18 on any given roll is p = 1

12 but since we will continue rolling until
we get a success for the third time, this is modeled by a negative binomial
distribution and you are looking for

f(x) =

(
x− 1

2

)
(
11

12
)x−3(

1

12
)3 =

(x− 1)(x− 2)

2
(
11

12
)x−3(

1

12
)3

Computing f(x) for any given x is relatively painless but computing F(x) could
take some effort. There is generally not a graphing calculator distribution
option for negative binomial but the interactive cells below can be utilized to
help with the tedious computations. For example, if you were interested in
P (X < 20) = P (X ≤ 19) = F (19) then the interactive calculator below using
r=3 and p = 1

12 gives F (19) ≈ 0.20737. �

Example 7.4.4 Testing a critical component until failure. Let’s once
again test a series of critical system components until you find two that fail.
Again, suppose a particular component has a p=0.01 probability of breaking
on any given trial. Since you will stop when you encounter the third failure,
you can model this situation with a negative binomial distribution and the
probability that the 2nd component fails on the x-th trial is given by

f(x) =

(
x− 1

2− 1

)
0.99x−2 · 0.012 = (x− 1) · 0.99x−2 · 0.012.
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Once again, let’s compute the likelihood that you get the second failure on one
of the first five trials. Then,

F (5) = f(2)+f(3)+f(4)+f(5) = 0.012+2·0.99·0.012+3·0.992·0.012+4·0.993·0.012 ≈ somenicenumber

which is still relatively small. �

Theorem 7.4.5 Negative Binomial Distribution Sums to 1.

∞∑
x=r

(
x− 1

r − 1

)
(1− p)x−rpr = 1

Proof.
∞∑
x=r

(
x− 1

r − 1

)
(1− p)x−rpr = pr

∞∑
x=r

(
x− 1

r − 1

)
(1− p)x−r

and by using k = x− r

= pr
∞∑
k=0

(
r + k − 1

k

)
(1− p)k

= pr
1

(1− (1− p))r

= 1 �

Below, the interactive cell symbolically computes f(x) and F(x) for the
negative binomial distribution.

# Negative Binomial calculator
@interact
def _(p=input_box (1/12, width =15),r=slider (1,10,1,2)):

n = 4*( floor(r/p)+1)
np1 = n+1
R = range(r,np1)
f(x) =

(factorial(x-1)/( factorial(r-1)*factorial(x-r)))*(1-p)^(x-r)*p^r
acc = 0
for k in R:

prob = f(x=k)
acc = acc+prob
pretty_print('f(%s)␣=␣'%k,'␣%.8f'%prob ,'␣and␣F(%s)␣=␣

'%k,'␣%.8f'%acc)

Checkpoint 7.4.6 A telephone saleswoman arranges a sequence of interviews
of potential customers in order to sell them an insurance policy. She believes
that her success rate in completing a sale in any interview is 11 %. Provide
answers to at least 3 decimal places.
Determine the probability that she fails to make a sale on the first five inter-
views:
Determine the probability that she makes her first sale on the fourth interview:

Determine the probability that the second sale is made on the sixth interview:

Solution. Using geometric,

P (X > 5) = 1− F (5) = (1− p)5 = 0.895 ≈ 0.558
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Using geometric,

P (X = 4) = f(4) = (1− p)3 · p = 0.893 · 0.11 ≈ 0.078

Using negative binomial with r=2,

P (X = 6) = f(6) = 5(1− p)4 · p2 = 5 · 0.894 · 0.112 ≈ 0.04209

Theorem 7.4.7 Statistics for Negative Binomial Distribution. For the
Negative Binomial Distribution,

µ =
r

p

σ2 = r
1− p
p2

γ1 =
2− p√
r(1− p)

γ2 =
p2 − 6p+ 6

r(1− p)
+ 3

Proof. �

# Negative Binomial
var('x,n,p,r,alpha ')
assume(x,'integer ')
assume(alpha ,'integer ')
assume(alpha > 2)
assume (0 < p < 1)
@interact
def _(r=[2,5,10,15, alpha]):

f(x) = binomial(x-1,r-1)*p^r*(1-p)^(x-r)
mu = sum(x*f,x,r,oo).full_simplify ()
M2 = sum(x^2*f,x,r,oo).full_simplify ()
M3 = sum(x^3*f,x,r,oo).full_simplify ()
M4 = sum(x^4*f,x,r,oo).full_simplify ()

pretty_print('Mean␣=␣',mu)

v = (M2-mu^2).full_simplify ()
pretty_print('Variance␣=␣',v)
stand = sqrt(v)

sk = (((M3 - 3*M2*mu +
2*mu^3)).full_simplify ()/stand ^3).factor ()

pretty_print('Skewness␣=␣',sk)

kurt = ((M4 - 4*M3*mu + 6*M2*mu^2
-3*mu^4)/v^2).full_simplify ()

pretty_print('Kurtosis␣=␣',(kurt -3).factor (),'+3')

r = 3
p = 0.4
M = 20*r
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X = r:M # the space R of the random variable should be
infinite

Xshift = 0:(M-r) # because this is the way r does dbinom ,
etc. by letting

# x measure the number of failures rather
than the number

# of total trials. So, our x=r would be
0 failures and so

# r would count that as x=0.
mu = r/p # the formula for mean of the Binomial

Distributions
sdev = sqrt(r*(1-p)/p^2) # the formula for the standard

deviation
if(M < 101){
dnbinom( Xshift , r, p ) # let's print out a bunch of

actual probs
}
Pnbinom = dnbinom(Xshift , r, p ) # create the probability

function over X

Psample = rnbinom (10^6, r, p) # to create a histogram ,
sample a lot

Xtop=max(Psample) # for scaling the x-axis. Shift
by 1/2 below.

hist(Psample , prob=TRUE , br=(-1: Xtop)+0.5, col="skyblue2",
xlab="X␣-␣r",

main="Negative␣Binomial␣Probability␣Function␣vs␣
Approximating␣'Bell␣Curve'")

points(Xshift , Pnbinom , pch=19, col="darkgreen") # to
create actual (x,f(x))

Pnormal <- function(X){dnorm(X, mean=mu-r, sd=sdev)}
# to overlap a bell curve , shifting our mean by r in order

to fit the r protocol
curve(Pnormal , col="red", lwd=2, add=TRUE)

7.5 Summary

Binomial Distribution
Binomial Distribution Statistics
Geometric Distribution
Geometric Distribution Statistics
Negative Binomial Distribution
Negative Binomial Distribution Statistics

7.6 Exercises
Checkpoint 7.6.1 - Gallup Consumer Confidence Polling. A January
2008 Gallup poll on consumer confidence asked the question "How would you
rate economic conditions in this country today" and 22

• P(X is at most 5).

• P(X is at least 5).
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• the expected number of Excellent or Good responses.

Solution. This is a Binomial distribution with n=25 and p = 0.22.

• P(X is at most 5) = F(5) = f(0)+f(1)+f(2)+f(3)+f(4)+f(5) = 0.51843

• P(X is at least 5) = 1 - F(4) = 0.67183

• µ = np = 25 · .22 = 5.5

Checkpoint 7.6.2 - Rolling Dice. You keep on rolling a pair of dice and let
X be the number of rolls needed until you get a sum of 7 or 11 for the second
time. Determine:

1. P(7 or 11 on one roll)

2. The expected number of rolls until you get the second 7 or 11 sum.

3. P(X = 12)

4. P (X ≥ 4)

Solution. For this problem, use the Negative Binomial Distribution when
looking for the number of trials till the 2nd success. p is determined in the
first answer.

1. P(7 or 11 on one roll) = 8/36 = 2/9, using equally likely outcomes.

2. µ = r
p = 2

2/9 = 9

3. P (X = 12) =
(

11
1

)
(7/9)10 · (2/9)2 = 0.044

4.

P (X ≥ 4) = 1− P (x ≤ 3)

= 1− [f(2) + f(3)]

= 1−
[(

1

1

)
(2/9)2 +

(
2

1

)
(7/9)1 · (2/9)2

]
= 1− 0.1262 = 0.8738.

Checkpoint 7.6.3 - Collecting Kids Meal Prizes. You love to eat at
Chick-Fil-A with your kids and want to collect all of the five new book titles
that come randomly included with each kids meal. If the promotion with these
books starts today, determine:

1. The probability that you get a book you don’t have when purchasing the
first children’s meal.

2. The probability that you it takes more than four purchases in order to
get a second title.

3. The expected total number of children’s meals you would expect to pur-
chase in order to get all five titles.

Solution.

1. One. The first meal will certainly have a book that you have not received
yet.

2. This is a geometric distribution with p=4/5. P(X > 4) = 1 - F(4) =
(1− 4/5)4 = 1

625 which is very small. Note, in this case you would have
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needed to receive the same title randomly for all of the first four kids
meal purchases. If this were to ever happen, please let the people at the
counter know and it will be their pleasure to swap out for a new title.

3. Use the geometric distribution five times with changing values for p. For
the first book p = 1 means you are certain to get a new title. For the
second book title the probability of success is p=4/5; for the third book
title the probability of success is p=3/5; for the fourth the probability is
p=2/5; and for the last the probability is p = 1/5. Using the mean as
1/p in each case and accumulating these gives the total expected number
of meals to purchase as

1 +
1
4
5

+
1
3
5

+
1
2
5

+
1
1
5

= 1 +
5

4
+

5

3
+

5

2
+

5

1

=
12 + 15 + 25 + 30 + 60

12

=
142

12
= 11.833

and so you would need 12 kids meals. If this were to happen, please be
certain to donate the "extra" books to an organization that works with
kids or directly to some kids that you might know.

Checkpoint 7.6.4 - Rolling Dice. Suppose you roll a standard pair of
6-sided dice 20 times and let X measure the number of outcomes which result
in a sum of 7 or 11. Determine:

1. the expected number of rolls which have a sum of 7 or 11

2. P(X=5)

3. P( X > 5)

4. P( X < 5)
Checkpoint 7.6.5 - Rolling Dice yet again. Suppose you roll a standard
pair of 6-sided dice X times until you get a sum of 7 or 11 a third time.
Determine:

1. the expected number of rolls needed on average.

2. P(X=5)

3. P( X > 5)

4. P( X < 5)
Checkpoint 7.6.6 - 2 standard deviations from the mean. Given p =
0.3 determine the following:

1. For Binomial with n = 50, P (µ− 2σ ≤ X ≤ µ+ 2σ)

2. For Negative Binomial with r = 2, P (µ− 2σ ≤ X ≤ µ+ 2σ)

Solution. For Binomial with p = 0.3 and n = 50, µ = n · p = 15 and
σ2 = n · p · (1− p) = 10.5. So, σ =

√
10.5. Therefore,

P (µ− 2σ ≤ X ≤ µ+ 2σ) = P (15− 2
√

10.5 ≤ X ≤ 15 + 2
√

10.5)

P (X ∈ {9, 10, 11, ..., 19, 20, 21})
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Then
F (21)− F (8) ≈ 0.97491− 0.01825 = 0.95666

For Negative Binomial with p = 0.3 and r = 2, µ = 2
0.3 = 20

3 and σ2 = 2 0.7
0.32 =

140
9 and so σ ≈ 3.9. Therefore,

P (µ− 2σ ≤ X ≤ µ+ 2σ) = P (6.7− 7.8 ≤ X ≤ 6.7 + 7.8)

P (X ∈ {2, 3, ..., 14, 15, 16})

Then,
F (16) ≈ 0.973888

Checkpoint 7.6.7 Chapter Experiment. Take a die and roll it 4 times,
keeping track on paper each time you get a 6 (say). Repeat this 100 times.
(Actually, you can use a standard 6-sided die or find a more exotic one with
more sides.) You should have gotten anywhere from 0 of the rolls to be a 6
up to all of the rolls to be a 6. Collect the relative frequencies of each of the
possible outcomes in R= {0,1,2, ..., 100} and plot. Compare several of the
experimental relative frequencies with the theoretical value you would expect
using the proper distribution from this chapter. Comment on how well you
did.
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Chapter 8

Distributions based upon
Poisson Processes

8.1 Introduction

In this chapter, you will investigate the relationship between number of suc-
cesses over some interval. For each, one of these quantities will be fixed and
the other one variable. First, consider the following:
Definition 8.1.1 Poisson Process. A Poisson process is a course of action
in which:

1. Successes in non-overlapping subintervals are independent of each other.

2. The probability of exactly one success in a sufficiently small interval of
length h is proportional to h. In notation, P(one success) = λh.

3. The probability of two or more successes in a sufficiently small interval
is essentially 0.

♦

You should presume these assumptions implicitly for the distributions dis-
cussed in this chapter.

In this chapter, you will investigate the following distributions:

1. Poisson - the interval is fixed and X measures the variable number of
successes.

2. Exponential - the number of successes is fixed–at 1–and X measures the
variable interval length needed to get that success.

3. Gamma - the number of successes is fixed and X measures the variable
interval needed to get the desired number of successes.

8.2 Poisson Distribution

Consider a Poisson Process where you start with an interval of fixed length T
and where X measures the variable number of successes, or changes, within that
interval. The resulting distribution of X will be called a Poisson distribution.

129
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Theorem 8.2.1 Poisson Probability Function. Assume X measures the
number of successes in an interval [0,T] within some Poisson process. Then,

f(x) =
µxe−µ

x!

for R = {0, 1, 2, ...}.

Proof. For a sufficiently large natural number n, break up the given interval
[0,T] into n uniform parts each of width h = T/n. Using the properties of
Poisson processes, n very large implies h will be very small and eventually
small enough so that

P (exactly one success on a given interval) = p = λ
T

n
.

However, since there are a finite number of independent intervals each with
probability p of containing a success then you can use a Binomial distribution
to evaluate the corresponding probabilities so long as n is finite. Doing so
yields and taking the limit as n approaches infinity gives:

f(x) = P (x changes in [0,T])

= lim
n→∞

(
n

x

)
px(1− p)n−x

= lim
n→∞

(
n

x

)
(
λT

n
)x(1− λT

n
)n−x

= lim
n→∞

n(n− 1)...(n− x+ 1)

x!
(
λT

n
)x(1− λT

n
)n−x

=
(λT )x

x!
lim
n→∞

n(n− 1)...(n− x+ 1)

n · n · ... · n
(1− λT

n
)n(1− λT

n
)−x

=
(λT )x

x!
lim
n→∞

(1− 1

n
)...(1− x− 1

n
)(1− λT

n
)n(1− λT

n
)−x

=
(λT )x

x!
lim
n→∞

(1− λT

n
)n lim

n→∞
(1− λT

n
)−x

=
(λT )x

x!
lim
n→∞

(1− λT

n
)n · 1

=
(λT )x

x!
e−λT �

Theorem 8.2.2 Verify Poisson Probability Function.

∞∑
x=0

(λT )x

x!
e−λT = 1

Proof. Using the Power Series expansion for the natural exponential,

∞∑
x=0

f(x) =

∞∑
x=0

(λT )x

x!
e−λT

= e−λT
∞∑
x=0

(λT )x

x!

= e−λT eλT

= 1 �
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Example 8.2.3 Router Requests. Everyone using the internet utilizes a
series of "routers" who spend their time waiting for someone to show up and
ask for something to be done. Let’s consider one such router which, over time,
has been shown to receive on average 1000 such requests in any given 10 minute
period during regular working hours. In general, a Poisson process with mean
1000 would seem to fit and therefore the Poisson distribution would be a good
model. We will find out below that λT = µ = 1000 and will use that here to
get

f(x) =
1000x

x!
e−1000.

So, suppose we would like to know the likelihood of receiving exactly 1020
requests in a 10 minute time interval. This means we need

P (X = 1020) = f(1020) =
10001020

1020!
e−1000

which might be totally impossible to compute directly using a regular calcula-
tor. However, many graphing calculators have a built-in function where f(x) =
poissonpdf(mu,x) and F(x) = poissoncdf(mu,x). To answer our question,

f(1020) = poissonpdf(1000,1020) ≈ 0.01024.

On the other hand, suppose the question is to ask whether 1020 or fewer
requests wil be made in the 10 minute interval. If so, then

F (1020) = poissoncdf(1000,1020) ≈ 0.74258.

�
Checkpoint 8.2.4 WebWork. This one uses the poisson distribution.

Customers arrive at a grocery store at an average of 1.8 per minute. Assume
that the number of arrivals in a minute follows the Poisson distribution. Pro-
vide answers to the following to 3 decimal places.
Part a)
What is the probability that exactly two customers arrive in a minute?
Part b)
Find the probability that more than three customers arrive in a two-minute
period.
Part c)
What is the probability that at least seven customers arrive in three minutes,
given that exactly two arrive in the first minute?
Solution. Part a)
Let X be the number of customers arriving in a one-minute interval. Then
X ∼ Po(1.8), and
Pr(X = 2) = e−1.81.82

2! = 0.268.
Part b)
If Y denotes the number of customers arriving in a two-minute interval, then
Y ∼ Po(2× 1.8), and Pr(Y > 3) = 1− Pr(Y ≤ 3) = 0.000. Via R:
ppois(3, lambda=3.6, lower.tail=FALSE)
Part c)
For i = 1, 2, 3, let Xi be the number of customers arriving in minute i.
These variables are independent, since counts in a Poisson process over non-
overlapping intervals are independent; moreover X ∼ Po(1.8). Hence

where Y ∼ Po(3.6) as in part b. The result is 0.000. Via R:
ppois(4, 3.6, lower.tail=FALSE)
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Theorem 8.2.5 Statistics for Poisson.

µ = λT

σ2 = µ

γ1 =
1
√
µ

γ2 =
1

µ
+ 3

Proof. Using the f(x) generated in the previous theorem

µ = E[X]

=

∞∑
x=0

x · (λT )x

x!
e−λT

= λTe−λT
∞∑
x=1

(λT )x−1

(x− 1)!

= λTe−λT
∞∑
k=0

(λT )k

k!

= λTe−λT eλT

= λT

which confirms the use of µ in the original probability formula.
Continuing with µ = λT , the variance is given by

σ2 = E[X(X − 1)] + µ− µ2

=

∞∑
x=0

x(x− 1) · µ
x

x!
e−µ + µ− µ2

= e−µµ2
∞∑
x=2

µx−2

(x− 2)!
+ µ− µ2

= e−µµ2
∞∑
k=0

µk

k!
+ µ− µ2

= µ2 + µ− µ2

= µ

To derive the skewness and kurtosis, you can depend upon Sage...see the live
cell below. �

var('x,mu')
assume(x,'integer ')

f(x) =e^(-mu)*mu^x/factorial(x)
mu = sum(x*f,x,0,oo).factor ()
M2 = sum(x^2*f,x,0,oo).factor ()
M3 = sum(x^3*f,x,0,oo).factor ()
M4 = sum(x^4*f,x,0,oo).factor ()

pretty_print('Mean␣=␣',mu)
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v = (M2-mu^2).factor ()
pretty_print('Variance␣=␣',v)
stand = sqrt(v)

sk = ((M3 - 3*M2*mu + 2*mu^3)).factor ()/stand^3
pretty_print('Skewness␣=␣',sk)

kurt = (M4 - 4*M3*mu + 6*M2*mu^2 -3*mu^4).factor ()/stand^4
pretty_print('Kurtosis␣=␣',(kurt -3).factor (),'+3')

mu = 3 # the mean must be given
sdev = sqrt(mu) # the formula for the standard deviation

M = mu*6 # the space is infinite but we just go out 6
standard deviations

X = 0:M # part of the space R of the random variable
if(M < 101){
dpois( X, mu, log = FALSE ) # let's print out a bunch of

actual probs if M reasonable
}

Ppois = dpois(X, mu ) # create the probability function
over X

Psample = rpois (10^6, mu) # to create a histogram , sample a
lot

Xtop=max(Psample) # for scaling the x-axis. Shift
by 1/2 below.

hist(Psample , prob=TRUE , br=(-1: Xtop)+0.5, col="skyblue2",
xlab="X",

main="Poisson␣Probability␣Function␣vs␣Approximating␣'Bell␣
Curve '")

points(X, Ppois , pch=19, col="darkgreen") # to create
actual (x,f(x))

Pnormal <- function(X){dnorm(X, mean=mu, sd=sdev)} # to
overlap a bell curve

curve(Pnormal , col="red", lwd=2, add=TRUE)

8.3 Exponential Distribution
Once again, consider a Poisson Process where you start with an interval of
variable length X so that X measures the interval needed in order to obtain a
first success with R = (0,∞). The resulting distribution of X will be called an
Exponential distribution.

To derive the probability function for this distribution, consider finding f(x)
by first considering F(x). This gives

F (x) = P (X ≤ x)

= 1− P (X > x)

= 1− P (first change occurs after an interval of length x)

= 1− P (no changes in the interval [0,x])
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= 1− (λx)0e−λx

0!

= 1− e−λx

where the discrete Poisson Probability Function is used to answer the proba-
bility of exactly no changes in the "fixed" interval [0,x].

Using this distribution function and taking the derivative yields

f(x) = F ′(x) = λe−λx.

We found that if λ is the parameter for the Poisson process, then the
Poisson distribution had mean λT or if one presumed that T=1, then for that
distribution, the mean is just λ. We will find out below that the mean for the
exponential distribution will be 1

λ . Therefore, we will eventually present this
formula using the exponental mean µ = 1

λ rather than using λ in the actual
formula.

You will also often find that exercises in other textbooks and in online
WeBWorK will just provide λ for the underlying Poisson process and that
the time interval T will be presumed to be T=1. For those problems, if the
exercise asks for a Poisson probability, use µ = λ while if the exercise asks for
an Exponential probability, use µ = 1

λ .
Theorem 8.3.1 Verification of Exponential Probability Function.∫ ∞

0

λe−λxdx = 1

Proof. ∫ ∞
0

λe−λxdx

=

∫ ∞
0

e−udu

= −e−u
∣∣∞
0

= 1

where we used the substitution u = λx. �

Theorem 8.3.2 Derivation of Statistics for Exponential Distribution
and Plotting.

σ2 = µ2

γ1 = 2

γ2 = 9

Proof. For the mean, use integration by parts with u = x and dv = λe−λ·x to
get (eventually)

Mean = µ =

∫ ∞
0

x · λe−λµ

=

[
−(x+

1

λ
)e−λ·x

] ∣∣∞
0

=
1

λ
.

and so the use of λ = 1
µ in f(x) is warranted.

The remaining statistics are derived similarly using repeated integration by
parts. The interactive Sage cell below calculates those for you automatically.

�
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# Exponential Distribution
var('x,mu')
assume(mu >0)

f(x) =e^(-x/mu)/mu
mu = integral(x*f,x,0,oo).factor ()
M2 = integral(x^2*f,x,0,oo).factor ()
M3 = integral(x^3*f,x,0,oo).factor ()
M4 = integral(x^4*f,x,0,oo).factor ()

pretty_print('Mean␣=␣',mu)

v = (M2-mu^2).factor ()
pretty_print('Variance␣=␣',v)
stand = sqrt(v)

sk = (((M3 - 3*M2*mu + 2*mu^3))/stand ^3).simplify ()
pretty_print('Skewness␣=␣',sk)

kurt = (M4 - 4*M3*mu + 6*M2*mu^2 -3*mu^4).factor ()/stand^4
pretty_print('Kurtosis␣=␣',(kurt -3).factor (),'+3')
@interact
def _(m = slider (1,12,1/2,2, label='mu')):

plot(f(mu=m),x,0,30).show(ymax =1)

Definition 8.3.3 Alternate Form for the Exponential Distribution
Probability Function. Given a Poisson process and a constant µ = 1

λ ,
suppose X measures the variable interval length needed until you get a first
success. Then X has an exponential distribution with probability function

f(x) =
1

µ
e−

x
µ .

♦

Theorem 8.3.4 Distribution function for Exponential Distribution.

F (x) = 1− e−
x
µ

Proof. Using f(x) = 1
µe
− xµ , note

F (x) =

∫ x

0

1

µ
e−

u
µ du

= −e−
u
µ

∣∣x
0

= 1− e−
x
µ �

Example 8.3.5 Router Requests Revisited. Once again, let’s consider
a router which, over time, has been shown to receive on average 1000 such
requests in any given 10 minute period during regular working hours. This
would mean that, on average, it would take µ = 10

1000 = 1
100 = 0.01 minutes

(i.e., less than a second) to receive the first request. If X were to measure
the time interval until the first actual request comes in, then the Exponential
distribution would be a good model using

f(x) =
1

0.01
e−

x
0.01 .
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Let’s determine the probability that a first request arrives in the next two
seconds. First, note that since X is a continuous variable that f(x) is NOT
the probability of exactly X minutes but you must integrate to compute all
probabilities. Also, the next 2 seconds is actually the next 2

60 = 1
30 of a

minute. Therefore, F(x) is what you need in general and you find

P (X ≤ 1

30
) = F (

1

30
) = 1− e−

1
30

0.01 ≈ 0.96433.

�
Checkpoint 8.3.6 WebWork. This one uses the exponential distribution.

Suppose that the time (in hours) required to repair a machine is an exponen-
tially distributed random variable with parameter λ = 0.2. What is
(a) the probability that a repair takes less than 3 hours?
(b) the conditional probability that a repair takes at least 7 hours, given that
it takes more than 4 hours?

r=1 # the number of successes desired
# the mean till first must be given

mu = 3
sdev = sqrt(mu) # the formula for the standard deviation

M = mu*3 # the space is infinite but we just go out 3
standard deviations

X = 0:M # quantiles for the space R of the random variable

Pexp <- function(x){dexp(x, mu )} # create the probability
function over X

curve(Pexp , from=0, to=M, xlab="X", col="blue", lwd=3,
main="Gamma␣Sampling␣vs␣Gamma␣Curve␣vs␣Approximating␣'Bell␣

Curve '")
Pnormal <- function(X){dnorm(X, mean=mu, sd=sdev)} # to

overlap a bell curve
curve(Pnormal , col="red", lwd=2, add=TRUE)

Psample = rexp (10^6, mu) # to create a histogram , sample a
lot

# Xtop=max(Psample) # for scaling the x-axis. Shift
by 1/2 below.

hist(Psample , prob=TRUE , add=TRUE)

Theorem 8.3.7 The Exponential Distribution yields a continuous
memoryless model.. If X has an exponential distribution and a and b are
nonnegative integers, then

P (X > a+ b|X > b) = P (X > a)

Proof. Using the definition of conditional probability,

P (X > a+ b|X > b) = P (X > a+ b ∩X > b) P (X > b)

= P (X > a+ b)/P (X > b)

= e−(a+b)/µ/e−b/µ

= e−a/µ

= P (X > a) �
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Checkpoint 8.3.8 It can be presumed that the life span in years of a certain
brand of lightbulbs follows the Poisson process assumptions. Suppose that the
mean life span till failure is known to be 0.7 years. A tester makes random
observations of the life times of this particular brand of lightbulbs and records
them one by one as either a success if the life time exceeds 1 year, or as a
failure otherwise.
Determine the probability that a randomly tested bulb lasts more than 1 year:

Determine probability that the first success occurs in the fifth observation:

Determine the probability that the second success occurs in the 8th observation
given that the first success occurred in the 3rd observation:
Determine the probability that the first success occurs in an odd-numbered
observation:
Hint. Use the exponential distribution to get the first answer. Use the geo-
metric to get the remainder.
Solution. Using the exponential distribution,

p = P (X > 1) = 1− F (1) = 1− (1− e− 1
0.7 ) ≈ 0.2397.

Now, use the geometric distribution with p = 0.2397...

P (X = 5) = f(5) = (1− 0.2397)4 · 0.2397 ≈ 0.0801.

P (2nd success on 8|1st success on 3) = P (X = 5) ≈ 0.0801

P (1st success on an odd trial) = f(1) + f(3) + f(5) + ...

= p+ (1− p)2 · p+ (1− p)4 · p+ (1− p)6 · p+ ...

= p

∞∑
x=0

(
(1− p)2

)k
= p

1

1− (1− p)2
≈ 0.5681

8.4 Gamma Distribution

Extending the exponential distribution model developed above, consider a Pois-
son Process where you start with an interval of variable length X so that X
measures the interval needed in order to obtain the rth success for some natural
number r. Then R = (0,∞) and the resulting distribution of X will be called
a Gamma distribution.
Definition 8.4.1 Gamma Function.

Γ(t) =

∫ ∞
0

ut−1e−udu

♦

Theorem 8.4.2 Gamma Function on the natural numbers. For n ∈ N,

Γ(n+ 1) = n!
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Proof. Letting n be a natural number and applying integration by parts one
time gives

Γ(n+ 1) =

∫ ∞
0

une−udu

= −un · e−u
∣∣∞
0

+ n

∫ ∞
0

un−1e−udu

= 0− 0 + nΓ(n)

Continuing using an inductive argument to obtain the final result. �

To find the probability function for the gamma distribution, once again
focus on the development of F(x). Assuming r is a natural number greater
than 1 and noting that X measures the interval length needed in order to
achieve the rth success

F (x) = P (X ≤ x)

= 1− P (X > x)

= 1− P (fewer than r successes in [0,x])

= 1−
[ (λx)0e−λx

0!
+

(λx)1e−λx

1!
+ ...+

(λx)r−1e−λx

(r − 1)!

]
= 1−

r−1∑
k=0

(λx)ke−λx

k!

where the discrete Poisson probability function is used on the interval [0,x]. The
derivative of this function however is "telescoping" and terms cancel. Indeed,

F ′(x) = λe−λx/0!

− λe−λx/1! + λx · λe−λx/1!

− λ22xe−λx/2! + λ2x2 · λe−λx/2!

− λ33x2e−λx/3! + λ3x3 · λe−λx/3!

...

− λr−1(r − 1)xr−2e−λx/(r − 1)! + λr−1xr−1 · λe−λx/(r − 1)!

= λrxr−1e−λx/(r − 1)!

where you can replace (r − 1)! = Γ(r).
Notice that for this random variable, µ = λT can be obtained for the

exponential distribution. For the Gamma distribution, the following takes µ to
be the average interval till the first success and then modifies the corresponding
Gamma parameters according to increasing values of r.
Definition 8.4.3 Gamma Distribution Probability Function. If X
measures the interval until the rth success and µ as the average interval until
the 1st success, then X with probability function

f(x) =
xr−1 · e−

x
µ

Γ(r) · µr

has a Gamma Distribution. ♦

Checkpoint 8.4.4 It can be presumed that the life span in years of a certain
brand of lightbulbs follows the Poisson process assumptions. Suppose that the
mean life span till failure is known to be 0.7 years. To do long-term study, a
series of light bulbs are arranged so that when the first one fails, the next one
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comes on, etc.
Determine the probability that it takes at most 3.5 years before the 4th bulb
fails:
Solution. This is a gamma distribution with r = 4 and

F (x) = 1−
3∑
k=0

(x/0.7)ke−x/0.7

k!

So,

P (X < 3.5) = F (3.5)

= 1− (3.5/0.7)0e−3.5/0.7

0!

− (3.5/0.7)1e−3.5/0.7

1!

− (3.5/0.7)2e−3.5/0.7

2!
− (3.5/0.7)3e−3.5/0.7

3!

= 1− e−5 − 5 · e−5 − 25

2
· e−5 − 125

6
· e−5

= 1− e−5 (1 + 5 + 25/2 + 125/6) ≈ 0.73497.

Example 8.4.5 Router Requests Revisited Again. For the third time,
let’s consider a router which, over time, has been shown to receive on average
1000 requests in any given 10 minute period during regular working hours
and you want to know the likelihood that it takes more than 4 seconds in
order to receive the 5th request. As you have already seen, it takes on average

10
1000 = 1

100 = 0.01 minutes to receive the first request so we use that again here.
If X were to measure the time interval until the fifth actual request comes in,
then the Gamma distribution would be a good model using

f(x) =
x5−1 · e− x

0.01

Γ(5) · 0.015

The question above asks for

P (X > 4seconds) = P (X >
4

60
) = 1− F (

4

60
).

Again, since X is a continuous variable you must integrate to compute proba-
bilities. This will require integration by parts or you can use the F(x) from the
derivation above. Here, let’s just let Sage do the integration for us noting that
Γ(5) = 4! = 24. You can compute the needed integral using the interactive cell
immediately below. �

Therefore

P (X > 4seconds) = 1− F (
4

60
) ≈ 0.205627.

var('x')
f = x^4*e^(-x/0.01) /(24*0.01^5)
prob_complement = integrate(f,x,0 ,4/60)
print n(1- prob_complement)
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Theorem 8.4.6 Verify Gamma Probability function.∫ ∞
0

xr−1e−x/µ

Γ(r)µr
dx = 1

Proof. Evaluate the sage code below. �

# Gamma Distribution
var('x,mu,r')
assume(mu >0)
assume(r,'integer ')
assume(r>1)
f(x) =x^(r-1)*e^(-x/mu)/(gamma(r)*mu^r)
S = integral(f,x,0,oo).full_simplify ()
F = '$␣\int_0 ^{\ infty}␣\\frac{x^{r-1}␣e^{-x/␣\mu}}{\ Gamma(r)␣

\mu^r}␣dx␣=␣%s$'%str(S)
html(F)

# Gamma Distribution Graphing
var('x,mu,r')
assume(mu >0)
assume(r,'integer ')
@interact
def _(r=[2,3,6,12,24],mu=slider (1,12,1,5,label='mu')):

f(x) =x^(r-1)*e^(-x/mu)/(gamma(r)*mu^r)
plot(f,x,0 ,200).show()

Derivation of mean, variance, skewness, and kurtosis. Pick "alpha" for the
general formulas.

# Gamma Distribution
var('x,mu,r,alpha ')
assume(mu >0)
assume(alpha ,'integer ')
assume(alpha >1)
@interact
def _(r=[2,3,6,9,alpha]):

f(x) =x^(r-1)*e^(-x/mu)/(gamma(r)*mu^r)
mean = integral(x*f,x,0,oo).full_simplify ()
M2 = integral(x^2*f,x,0,oo).full_simplify ()
M3 = integral(x^3*f,x,0,oo).full_simplify ()
M4 = integral(x^4*f,x,0,oo).full_simplify ()

pretty_print('Mean␣=␣',mean)

v = (M2-mean ^2).factor ()
pretty_print('Variance␣=␣',v)
stand = sqrt(v)

sk = (((M3 - 3*M2*mean +
2*mean ^3))/stand ^3).full_simplify ()

pretty_print('Skewness␣=␣',sk)

kurt = (M4 - 4*M3*mean + 6*M2*mean^2
-3*mean ^4).factor ()/stand^4

pretty_print('Kurtosis␣=␣',(kurt -3).factor (),'+3')
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The interactive cell below can be used to compute the distribution function
for the gamma distribution for various input values. If you desire to let r get
bigger than the slider allows, feel free to edit the cell above and evaluate again.

# Gamma Distribution Calculator
var('x,mu,r')
pretty_print('Enter␣the␣number␣of␣successes␣desired ,␣the␣

given␣mean ,␣and␣the␣value␣of␣X␣to␣get␣F(X)')
@interact
def _(r=slider (1,10,1,2),mu = input_box(2,label="$\mu␣=␣

$",width =10),b=input_box(2,label="X␣=␣",width =10)):
f(x) =x^(r-1)*e^(-x/mu)/(gamma(r)*mu^r)
p = integral(f,x,0,b)

pretty_print('Probability␣=␣\t',p,'␣which␣is␣
approximately␣\t',p.n(digits =5))

r=3 # the number of successes desired
mu1 = 3 # the mean till first must be given
mu = mu1*r
sdev = sqrt(r)*mu1 # the formula for the standard deviation

M = mu*3 # the space is infinite but we just go out 3
standard deviations

X = 0:M # quantiles for the space R of the random variable

Ppois <- function(x){dgamma(x, shape=r, scale=mu1 )} #
create the probability function over X

curve(Ppois , from=0, to=M, xlab="X", col="blue", lwd=3,
main="Gamma␣Sampling␣vs␣Gamma␣Curve␣vs␣Approximating␣'Bell␣

Curve '")
Pnormal <- function(X){dnorm(X, mean=mu, sd=sdev)} # to

overlap a bell curve
curve(Pnormal , col="red", lwd=2, add=TRUE)

Psample = rgamma (10^6, shape=r, scale=mu1) # to create a
histogram , sample a lot

# Xtop=max(Psample) # for scaling the x-axis. Shift
by 1/2 below.

hist(Psample , prob=TRUE , add=TRUE)

8.5 Summary
Here is a summary of the major points in this chapter:TBA

8.6 Exercises
Checkpoint 8.6.1 - Home Sales. A local realty office sells on average 10
houses a week. Let X measure the number of houses they will sell in the next
week. Determine

1. the probability the realty office sells 12 houses next week.

2. the probability the realty office sells fewer than 10 houses next week.
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3. the interval µ− 2σ ≤ X ≤ µ+ 2σ.

4. P (µ− 2σ ≤ X ≤ µ+ 2σ).
Checkpoint 8.6.2 - Customer arrivals - Total. Customers arrive at your
store on the average of 10 per hour. Assuming that the arrival of customers
satisfies the properties of a Poisson process, determine:

1. the expected number of customers to arrive in a given 3 hour period.

2. the probability that fewer than 10 customers arrive in a given hour.

Solution. Using the given information, apply the Poisson distribution. For
one hour µ = 10 so that for three hours the expected number of customers
would be triple with 30 expected customers.
With µ1 = 10,

P (X < 10) = F (9)

=
100e−10

0!
+

101e−10

1!
+

102e−10

2!
+ ...+

108e−10

8!
+

109e−10

9!

= e−10 · (1 + 10 +
100

2
+ ...+

108

8!
+

109

9!
)

Checkpoint 8.6.3 - Customer arrivals - First. Customers arrive at your
store on the average of 10 per hour. Assuming that the arrival of customers
satisfies the properties of a Poisson process, determine:

1. the number of minutes expected between the arrival of each customer

2. the probability it takes more than 9 minutes before the next customer
arrives.

Solution. Using the given information, apply the exponential distribution.
Since 10 arrive on average in one hour then you would expect 1 to arrive in 6
minutes.
With µ = 6 minutes,

P (X > 9) = 1− F (9) = e−9/6.

Checkpoint 8.6.4 - Customer arrivals - 10th. Customers arrive at your
store on the average of 10 per hour. Assuming that the arrival of customers
satisfies the properties of a Poisson process, determine:

1. the number of minutes expected for the arrival of three customers.

2. the probability it takes less than 20 minutes before the third customer
arrives.

Solution. Using the given information, apply the gamma distribution. Since
10 arrive on average in one hour then you would expect 1 to arrive in 6 minutes
and therefore 3 to arrive on average in 18 minutes.
With µ = 18 minutes,

P (X < 20) = F (20).

Checkpoint 8.6.5 Approximating Binomial with Poisson. Hint.
First determine the mean µ for the binomial. Use this mean as the input
for the Poisson distribution function.Solution. From the formula, µ = np =
40000 · 1

4 = 10000. So, using Poisson’s probability function

fPoisson =
10000x

x!
e−10000
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would require you to compute

e−10000
∞∑

x=10000

10000x

x!

which is also a mess. However with a computational resource such as
a graphing calculator, just compare 1 - binomcdf(40000,0.25,9999) to 1-
poissoncdf(10000,9999) noting that the complement of the given question is
from X from 0 to 9999. The two values should be relatively close
This approximation method is not completely satisfactory since both being
discrete distributions with no nice distribution function formulas require sum-
mations to accumulate. We have seen however that both the Poisson and the
Binomial probability functions start to have a bell-shape as µ increases for the
Poisson and as n increases (i.e. and therefore µ increases) for the Binomial.
Hence, we will eventually approximate with each of these using the (continu-
ous) bell-shaped distribution–the normal distribution discussed later–for which
instead of accumulating probability function values we integrate them.
Checkpoint 8.6.6 - Computer Network Data Traffic. Consider the
arrival of requests on a server. Presume that the requests are considered as
coming from an anonymous and large collection of users independently of each
other on an average of 50 requests per second. If X measures the number of
requests per second, determine

1. the probability that in any given second the server gets fewer than 50
requests

2. P (µ− 2σ ≤ X ≤ µ+ 2σ)

3. the expected number of requests per hour.

Solution. Given the average of 50 requests per second and X measuring the
number of "successes" in a given second long time interval given a Poission
distribution

f(x) =
50x

x!
e−50.

Then,

P (X < 50) = F (49) =

49∑
x=0

50x

x!
e−50

and using the graphing calculator function poissoncdf(50,49) = 0.48119.
For a time interval of one second, the mean is given to be 50 requests. Using the
formulas developed above, the standard deviation therefore is

√
50. Therefore

P (µ− 2σ ≤ X ≤ µ+ 2σ) = P (50− 2
√

50 ≤ X ≤ 50 + 2
√

50)

= P (X ∈ {36, 37, 38, ..., 62, 63, 64}).

Using the distribution function,

F (64)− F (35) ≈ 0.97640− 0.01621 = 0.96019

Finally, notice that the time interval has been adjusted. Since the mean formula
is proportional to the interval over which X is measured, using µ = λT with
λ = 1 when the interval is 1 second, then when the interval is one hour, T =
3600 seconds. Hence, we would expect on average 50 · 3600 = 180, 000 requests
in one hour.
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Chapter 9

Normal Distributions

9.1 Introduction
You should have noticed by now that many distributions tend to have a bell-
shaped graph as parameters are allowed to increase. Indeed, the formulas for
skewness γ1 and kurtosis γ2 approach 0 and 3 respectively for the Hypergeo-
metric, Binomial, Negative Binomial, Poisson, and Gamma Distributions. One
might wonder if this is just a happy coincidence or is something more insidious
at play.

The answer by appealing to mathematics reveals that nothing sinister is
going on but that it is indeed true that the eventual destiny for distributions
is one that is bell-shaped. It is therefore of interest to figure out if that distri-
bution has a nice form that can be accessed directly. The focus of this chapter
is to consider this bell-shaped goal known as the "normal distribution."

We present the normal distribution by simply presenting it’s probability
function without derivation. In order to more carefully investigate the devel-
opment of the normal distribution (and the Chi-Square Distribution) you will
need to study "Moment Generating Functions" and some serious mathematics.
Without supplying this rigor you can still utilize the results.

9.2 The Normal Distribution
Definition 9.2.1 The Normal Distribution. Given two parameters µ and
σ, a random variable X over R = (−∞,∞) has a normal distribution provided
it has a probability function given by

f(x) =
1

σ
√

2π
e−( x−µσ )

2
/2

♦

The normal distribution is also sometimes referred to as the Gaussian Dis-
tribution (often by Physicists) or the Bell Curve (often by social scientists).

var('x,mu,sigma ')
f(x) = e^(-((x-mu)/sigma)^2/2)/(sigma*sqrt (2*pi))
@interact
def

_(m=slider (-10,10,1,0,label='$\mu$'),s=slider (1/5,5,1/10,1, label='$\sigma$ ')):
titletext = "Normal␣Curve␣with␣mean␣"+str(m)+"␣and␣

standard␣deviation␣"+str(s)

145
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G = plot(f(mu=m,sigma=s),(x,m-5*s,m+5*s))
G +=

point ((0,1),size =1)+point ((12 ,0),size =1)+point ((-12,0),size =1)
G += point((m,f(x=m,mu=m,sigma=s)),color='red',size =20)
G +=

point((m+s,f(x=m+s,mu=m,sigma=s)),color='green ',size =20)
G +=

point((m-s,f(x=m-s,mu=m,sigma=s)),color='green ',size =20)
show(G,figsize =(5,3),title=titletext ,ymin=0,ymax=1,xmin=-15,xmax =15)

Theorem 9.2.2 If µ = 0 and σ = 1, then we say X has a standard nor-
mal distribution and often use Z as the variable name and will use Φ(z) for
the standard normal distribution function. In this case, the density function
reduces to

f(z) =
1√
2π
e−z

2/2

Proof. Convert to "standard units" using the conversion

z =
x− µ
σ

=
x− 0

1
= x. �

When in the standard normal distribution, you can use a graphing cal-
culator’s normalcdf(a,b) to approximate P (a ≤ Z ≤ b). Note that when no
mean or standard deviation for normalcdf is provided, the calculator presumes
standard normal.
Checkpoint 9.2.3 WebWork - Computing Standard Normal Proba-
bilities. You can use a graphing calculator’s normalcdf(a,b) to compute these.

Find the value of the standard normal random variable z, called z0 such that:
(a) P (z ≤ z0) = 0.7716
z0 =
(b) P (−z0 ≤ z ≤ z0) = 0.9856
z0 =
(c) P (−z0 ≤ z ≤ z0) = 0.1038
z0 =
(d) P (z ≥ z0) = 0.3436
z0 =
(e) P (−z0 ≤ z ≤ 0) = 0.2428
z0 =
(f) P (−2 ≤ z ≤ z0) = 0.8769
z0 =

Theorem 9.2.4 Verifying the normal probability function.∫ ∞
−∞

1

σ
√

2π
e−( x−µσ )

2
/2dx = 1

Proof. Note that you can convert the integral above to (((Unresolved xref,
reference "StandardUnitConversion"; check spelling or use "provisional" at-
tribute)))standard units so that it is sufficient to show

I =

∫ ∞
−∞

1√
2π
e−

z2

2 dz = 1

Toward this end, consider I2 and change the variables to get

I2 =

∫ ∞
−∞

1√
2π
e−

u2

2 du ·
∫ ∞
−∞

1√
2π
e−

v2

2 dv
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=
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−
u2+v2

2 dudv

Converting to polar coordinates using

dudv = rdrdθ

and
u2 + v2 = r2

gives

I2 =
1

2π

∫ 2π

0

∫ ∞
0

e−
r2

2 rdrdθ

=
1

2π

∫ 2π

0

−e− r
2

2

∣∣∞
0
dθ

=
1

2π

∫ 2π

0

1 · dθ

=
1

2π
θ
∣∣2π
0

= 1

as desired. �

Theorem 9.2.5 Verifying the normal probability mean.

E[X] =

∫ ∞
−∞

x · 1

σ
√

2π
e−( x−µσ )

2
/2dx = µ

Proof.
z =

x− µ
σ

implies by solving that
x = µ+ zσ

and therefore

E[X] =

∫ ∞
−∞

x · 1

σ
√

2π
e−( x−µσ )

2
/2dx

=
1√
2π

∫ ∞
−∞

(µ+ zσ) · e−z
2/2dz

= µ · 1√
2π

∫ ∞
−∞

e−z
2/2dz + σ · 1√

2π

∫ ∞
−∞

z · e−z
2/2dz

= µ · 1 + σ · 0
= µ

and therefore the use of µ is warranted. �

Theorem 9.2.6 Verifying the normal probability variance.

E[(X − µ)2] =

∫ ∞
−∞

(x− µ)2 · 1

σ
√

2π
e−( x−µσ )

2
/2dx = σ2

Proof.

E[(X − µ)2] =

∫ ∞
−∞

(x− µ)2 · 1

σ
√

2π
e−( x−µσ )

2
/2dx
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=
1√
2π

∫ ∞
−∞

σ2z2 · e−z
2/2dz

=
σ2

√
2π

∫ ∞
−∞

z · ze−z
2/2dz

=
σ2

√
2π
·
[
− ze−z

2/2
∣∣∞
−∞ +

∫ ∞
−∞

e−z
2/2dz

]
=

σ2

√
2π
·
[
0 +
√

2π
]

= σ2

using integration by parts and using the integration in the proof of the mean
above. So, the use of σ is warranted. �

Once again, you can use a graphing calculator’s normalcdf(a,b,mu,sigma)
to compute general normal probabilities. Pay attention to the the order of
terms. For normal distributions, the calculator function always requires an
interval. If you are looking for a one-sided probability, such as P (X > 4) for
a problem with mean µ = 2 and σ = 3, you can replace the infinite upper
limit with "large" finite endpoint. Providing something that is more than
10 standard deviations above the mean is for all practical purposes infinity
with respect to calculations. So, in this case P (X > 4) can be approximated
by normalcdf(4,32,2,3). If you are brave, you can go even higher and use
normalcdf(4,100000,2,3) if desired.
Checkpoint 9.2.7 WebWork - Computing Regular Normal Probabil-
ities. This one requires normalcdf with mean and standard deviation.

Fluorescent lighbulbs have lifetimes that are normally distributed with a mean
of 6 years and a standard deviation of 1.6 years. The figure below shows
the distribution of lifetimes of fluorescent lightbulbs. Calculate the shaded
area under the curve. Express your answer in decimal form with at least two
decimal place accuracy.
Answer:

images/webwork-33-image-1.png
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Checkpoint 9.2.8 WebWork - Computing Regular Normal Proba-
bilities. While we are at it, can we "go backwards" and figure out the mean
and variance if given some probabilities.

Consider a normal distribution curve where the middle 75 % of the area under
the curve lies above the interval ( 3 , 20 ). Use this information to find the
mean, µ , and the standard deviation, σ , of the distribution.
a) µ =
b) σ =

Theorem 9.2.9 Normal Distribution Maximum. The maximum of the
normal distribution probability function occurs when x = µ

Proof. Take the derivative of the probability function to get

√
2(µ− x)e

(
− (µ−x)2

2 σ2

)
2
√
πσ3

which is zero only when x = µ. Easily by evaluating to the left and right of
this value shows that this critical value yields a maximum. �

Theorem 9.2.10 Normal Distribution Points of Inflection. Points of
Inflection for the normal distribution probability function occurs when x = µ+σ
and x = µ− σ.

Proof. Take the second derivative of the probability function to get

√
2(µ+ σ − x)(µ− σ − x)e

(
− µ2

2 σ2
+µx

σ2
− x2

2 σ2

)
2
√
πσ5

which is zero only when x = µ± σ. Easily by evaluating to the left and right
of this value shows that these critical values yield points of inflection. �

Notice that the work needed to complete the integrals over the entire do-
main above was pretty serious. To determine probabilities for a given interval
is however not possible in general and therefore approximations are needed.
When using TI graphing calculators, you can use

P (a < x < b) = normalcdf(a, b, µ, σ).

Or you can use the calculator below.

@interact(layout=dict(top=[['a',
'b']],bottom =[['mu','sigma ']]))

def _(a=input_box(-2,width=10,label='a␣=␣
'),b=input_box(2,width=10,label='b␣=␣
'),mu=input_box(0,width=8,label='$\mu␣=␣
$'),sigma=input_box(1,width=8,label='$\sigma␣=␣$')):
f = e^(-((x-mu)/sigma)^2/2)/(sigma*sqrt (2*pi))
P = integral_numerical(f,a,b)[0]
print "P("+str(a)+"␣<␣X␣<␣"+str(b)+")␣~=␣"+str(P)

Checkpoint 9.2.11 WebWork - Applying Normal Probabilities.

The physical fitness of an athlete is often measured by how much oxygen the
athlete takes in (which is recorded in milliliters per kilogram, ml/kg). The
mean maximum oxygen uptake for elite athletes has been found to be 80 with
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a standard deviation of 9.8. Assume that the distribution is approximately
normal.
(a) What is the probability that an elite athlete has a maximum oxygen uptake
of at least 60 ml/kg?
answer:
(b) What is the probability that an elite athlete has a maximum oxygen uptake
of 65 ml/kg or lower?
answer:
(c) Consider someone with a maximum oxygen uptake of 29 ml/kg. Is it likely
that this person is an elite athlete? Write "YES" or "NO."
answer:

9.3 Chi-Square Distribution
The following distribution is related to both the Normal Distribution and to the
Gamma Distribution. Initially, consider a gamma distribution with probability
function

xr−1 · e−x/µ

Γ(r) · µr
.

Replacing µ = 2 and r with r/2 gives

xr/2−1 · e−x/2

Γ(r/2) · 2r/2

which is given a special name below.
Definition 9.3.1 Chi-Square Probability Function. R = (0,∞)

f(x) =
xr/2−1e−x/2

Γ(r/2)2r/2
.

χ2(r) ♦

# Chi -Square Grapher
@interact
def _(r=slider (1,20,1,3,label='r␣=')):

f = x^(r/2-1)*e^(-x/2)/(gamma(r/2) *2^(r/2))
plot(f,x,0,20).show()

Theorem 9.3.2 χ2 statistics.

µ = r

σ2 = 2r

γ1 = 2
√

2/r

γ2 =
12

r
+ 3

Theorem 9.3.3 Relationship between Normal and χ2. Z1, Z2, ..., Zr

X =

r∑
k=1

Z2
k

χ2(r)
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It also can be difficult to compute Chi-Square probabilities manually so
you will perhaps want to use a numerical approximation in this case as well.
The TI graphing calculator can be used with χ2cdf(a,b,r). Or, you can use the
calculator below.

On your graphing calculator, you can use P (a ≤ X ≤ b) ≈2cdf(a,b,r).

# Chi -Square Calculator
@interact(layout=dict(top=[['a', 'b']],bottom =[['r']]))
def _(a=input_box(0,width=10,label='a␣=␣

'),b=input_box(2,width=10,label='b␣=␣
'),r=input_box(2,width=8,label='r␣=')):
f = x^(r/2-1)*e^(-x/2)/(gamma(r/2) *2^(r/2))
P = numerical_integral(f,a,b)[0]
print "P("+str(a)+"␣<␣X␣<␣"+str(b)+")␣~=␣"+str(P)

9.4 Other "Bell Shaped" distributions

The Normal distribution discussed above is very important when doing sta-
tistical analysis. It however is not the only distribution that is symmetrical
about the mean and looks like a bell. In this section, we consider two other
options–one which is virtually useless and another which is very useful.
Definition 9.4.1 The Cauchy Distribution. Consider a continuous ran-
dom variable on the real numbers defined by

f(x) =
1/π

1 + x2
.

A random variable with this probability function is said to be a Cauchy Dis-
tribution. ♦

Theorem 9.4.2 The Cauchy Distribution.

f(x) =
1/π

1 + x2

(−∞,∞)

Proof.∫ ∞
−∞

1

1 + x2
dx = arctan(∞)− arctan(−∞) = π/2− (−π/2) = π.

π �

n &- 10
p &- 0.3

paste('Probability␣Function ')
dcauchy(x, location = 0, scale = 1, log = FALSE) # gives

the probability function
paste('Distribution␣function ')
pcauchy(q, location = 0, scale = 1, lower.tail = TRUE , log.p

= FALSE)
# gives the distribution function

paste('A␣random␣sample ')



152 CHAPTER 9. NORMAL DISTRIBUTIONS

rcauchy(n, location = 0, scale = 1) # gives a random
sample of 15 items from b(n,p)

x=seq(-4,4,length =200)
y=dcauchy(x,dcauchy(x, location = 0, scale = 1, log = FALSE))
plot(x,y,type="l",lwd=2,col="red",ylab="p")

Now that we have a probability function, it is important to determine its mean
and variance. It should be obvious that when doing so using the Cauchy
probability function, problems quickly arise. Indeed,∫ ∞

−∞
x

1

1 + x2
dx = (1/2)(ln(|∞|)− ln(| −∞|)

which is problematic. Further, for the variance∫ ∞
−∞

x2 1

1 + x2
dx

and note that the integrand does not converge to 0 at the endpoints and there-
fore the integral is automatically considered divergent. Thus it is reasonable
to note that the Cauchy distribution has no variance.

On the other hand, there is another bell-shaped distribution that is useful
and its random variable can be created by using a mixture of a normal variable
and a 2 variable. Indeed, suppose Z is a standard normal variable and Y is
2(r) with Y and Z independent. Define a new random variable

T =
Z√

(Y/r)
.

Then, T is said to have a (Student) t distribution. The good news is that this
distribution is useful and its statistics are presented below without proof.
Theorem 9.4.3 Student t-distribution. For the Student t variable T
defined above,

µ = 0

and if r>2
σ2 =

r

r − 2

and if r>3
γ1 = 0

and if r>4

γ2 =
6

r − 4
+ 3.

Example 9.4.4 Similarity between Normal and t-distributions for
larger n. Consider the probabilities P (−2 ≤ Z ≤ 2) vs P (−2 ≤ T ≤ 2) for a
t-distribution with r=30 degrees of freedom.
For normal,

P (−2 ≤ Z ≤ 2) = Φ(2)− Φ(−2) = 0.9545

while for t,
P (−2 ≤ T ≤ 2) = 0.9454.

�

# Display the Student 's t distributions with various



9.5. NORMAL DISTRIBUTION AS A LIMITING DISTRIBUTION 153

# degrees of freedom and compare to the normal distribution
# Copied from www.statmethods.net

x <- seq(-4, 4, length =100)
hx <- dnorm(x)

degf <- c(1, 3, 8, 30)
colors <- c("red", "blue", "darkgreen", "gold", "black")
labels <- c("df=1", "df=3", "df=8", "df=30", "normal")

plot(x, hx, type="l", lty=2, xlab="x␣value",
ylab="Density", main="Comparison␣of␣t␣Distributions")

for (i in 1:4){
lines(x, dt(x,degf[i]), lwd=2, col=colors[i])

}

legend("topright", inset =.05, title="Distributions",
labels , lwd=2, lty=c(1, 1, 1, 1, 2), col=colors)

9.5 Normal Distribution as a Limiting Distribu-
tion

Over the past several chapters you should have noticed that many distribu-
tions have skewness and kurtosis formulae which have limiting values of 0 and
3 respectively. This means that each of those distributions which can be ap-
proximated by the normal distribution for "large" parameter values.

To see how this works, consider a "random" distribution in the following
two interactive experiments. For the first graph below, a sequence of N random
samples, each of size r, ranging from 0 to "Range" is generated and graphed as
small data points. As the number of samples N and the sample size r increase,
notice that the data seems to cover the entire range of possible values relatively
uniformly. (For this scatter plot note that each row represents the data for one
sample of size r. The larger the N, the greater the number of rows.) Each row
is averaged and that mean value is plotted on the graph as a red circle. If you
check the "ShowMean”box, themeanofthesecirclesisindicatedbythegreenlineinthemiddleoftheplot.

For the second graph below, the means are collected and the relative fre-
quency of each is plotted. As N increases, you should see that the results
begin to show an interesting tendency. As you increase the data range, you
may notice this graph has a larger number of data values. Smoothing groups
this data into intervals of length two for perhaps a graph with less variability.

Consider each of the following:

• As N increases with single digit values of r, what appears to happen to
the mean and range of the means? How does increasing the data range
from 1-100 to 1-200 or 1-300 affect these results?

• As N increases (say, for a middle value of r), what appears to happen to
the means? How does increasing the data range from 1-100 to 1-200 or
1-300 affect these results?

• As r increases (say, for a middle value of N), what appears to happen to
the range of the averages? Does your conclusion actually depend upon
the value of N? (Look at the graph and don’t worry about the actual
numerical values.) How does increasing N for the second graph affect the
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skewness and kurtosis of that graph? Do things change significantly as r
is increased?

var('n,k')
from sage.finance.time_series import TimeSeries

@interact(layout=dict(top=[['Range '],['Show_Mean ',
'Smoothing ']],

bottom =[['N'],['r']]))

def _(Range =[100 ,200 ,300 ,500] ,N=slider (5,200,2,2, label="N␣=␣
Number␣of␣Samples"),r=slider (3,200,1,2, label="r␣=␣Sample␣
Size"),Show_Mean=False ,Smoothing=False):
R=[1..N] # R ranges over the number of

samples ... will point to the list of averages
rangemax = Range

data = random_matrix(ZZ,N,r,x=rangemax)
datapoints = []
avg_values = []
avg_string = []
averages = []
for n in range(N):

temp = 0
for k in range(r):

datapoints += [(data[n][k],n)]
temp += data[n][k]

avg_values.append(round(temp/r))
if Smoothing:

avg_string.append(str (2* round ((temp/r)/2)))
else:

avg_string.append(str(round(temp/r)))

averages += [( round(temp/r),n)] # make these
averages integers for use in grouping later

SCAT =
scatter_plot(datapoints ,markersize =2,edgecolor='red',figsize =(10 ,4),axes_labels =['Sample␣
Values ','Sample␣Number '])

AVGS =
scatter_plot(averages ,markersize =50, edgecolor='blue',marker='o',figsize =(7,4))

freqslist =
frequency_distribution(avg_string ,1).function ().items()

# compute sample statistics for the raw data as well as for
the N averages
Mean_data = (sum(sum(data))/(N*r)).n()

# STD_data = sqrt(sum(sum( (data -Mean_data)^2
))/(N*r)).n()
Mean_averages = mean(avg_values).n()

# STD_averages = sqrt(variance(avg_values).n())
# print "Data mean =",Mean_data ," vs Mean of the averages

=", Mean_averages
# print "Data STD = ",STD_data ," vs Standard Dev of avgs

=", STD_averages
if Show_Mean:
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avg_line =
line ([( Mean_data ,0) ,(Mean_data ,N-1)],rgbcolor='green ',thickness =10)

avg_text =
text('xbar',(Mean_data ,N),horizontal_alignment='right ',rgbcolor='green ')

else:
avg_line = Graphics ()
avg_text = Graphics ()

# Plot a scatter plot exhibiting uniformly random data and
the collection of averages
print(html("The␣random␣data␣plot␣on␣the␣left␣with␣each␣

row␣representing␣a␣sample␣with␣size␣determined␣by\n"+
"the␣slider␣above␣and␣each␣circle␣representing␣the␣

average␣for␣that␣particular␣sample .\n"+
"First ,␣keep␣sample␣size␣relatively␣low␣and␣

increase␣the␣number␣of␣samples.␣␣Then ,␣\n"+
"watch␣what␣happens␣when␣you␣slowly␣increase␣the␣

sample␣size."))

# Plot the relative frequencies of the grouped sample
averages
print(html("Now ,␣the␣averages␣(ie.␣the␣circles)␣from␣

above␣are␣collected␣and␣counted\n"+
"with␣the␣relative␣frequency␣of␣each␣average␣

graphed␣below.␣␣For␣a␣relatively␣large␣number␣
of\n"+

"samples ,␣notice␣what␣seems␣to␣happen␣to␣these␣
averages␣as␣the␣sample␣size␣increases."))

if Smoothing:
binRange = Range //2

else:
binRange = Range

# normed=True # if you want to have relative
frequencies below

his_low = 2* rangemax /7
his_high = 5* rangemax /7

T =
histogram(avg_values ,normed=False ,bins=binRange ,range =(his_low ,his_high),axes_labels =['Sample␣
Averages ','Frequency '])

#T =
TimeSeries(avg_values).plot_histogram(axes_labels =['Sample
Averages ','Frequency '])

pretty_print('Scatter␣Plot␣of␣random␣data.␣␣Horizontal␣
is␣number␣of␣samples.')

(SCAT+AVGS+avg_line+avg_text).show()
pretty_print('Histogram␣of␣Sample␣Averages ')
T.show(figsize =(5,2))

var('n,k')
from sage.finance.time_series import TimeSeries

@interact(layout=dict(top=[['Range '],['Show_Mean ',
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'Smoothing ']],
bottom =[['N'],['r']]))

def _(Range =[100 ,200 ,300 ,500] ,N=slider (5,200,2,2, label="N␣=␣
Number␣of␣Samples"),r=slider (3,200,1,2, label="r␣=␣Sample␣
Size"),Show_Mean=False ,Smoothing=False):
R=[1..N] # R ranges over the number of

samples ... will point to the list of averages
rangemax = Range

data = random_matrix(ZZ,N,r,x=rangemax)
datapoints = []
avg_values = []
avg_string = []
averages = []
for n in range(N):

temp = 0
for k in range(r):

datapoints += [(data[n][k],n)]
temp += data[n][k]

avg_values.append(round(temp/r))
if Smoothing:

avg_string.append(str (2* round ((temp/r)/2)))
else:

avg_string.append(str(round(temp/r)))

averages += [( round(temp/r),n)] # make these
averages integers for use in grouping later

SCAT =
scatter_plot(datapoints ,markersize =2,edgecolor='red',figsize =(10 ,4),axes_labels =['Sample␣
Values ','Sample␣Number '])

AVGS =
scatter_plot(averages ,markersize =50, edgecolor='blue',marker='o',figsize =(7,4))

freqslist =
frequency_distribution(avg_string ,1).function ().items()

# compute sample statistics for the raw data as well as for
the N averages
Mean_data = (sum(sum(data))/(N*r)).n()

# STD_data = sqrt(sum(sum( (data -Mean_data)^2
))/(N*r)).n()
Mean_averages = mean(avg_values).n()

# STD_averages = sqrt(variance(avg_values).n())
# print "Data mean =",Mean_data ," vs Mean of the averages

=", Mean_averages
# print "Data STD = ",STD_data ," vs Standard Dev of avgs

=", STD_averages
if Show_Mean:

avg_line =
line ([( Mean_data ,0) ,(Mean_data ,N-1)],rgbcolor='green ',thickness =10)

avg_text =
text('xbar',(Mean_data ,N),horizontal_alignment='right ',rgbcolor='green ')

else:
avg_line = Graphics ()
avg_text = Graphics ()

# Plot a scatter plot exhibiting uniformly random data and



9.6. CENTRAL LIMIT THEOREM 157

the collection of averages
print(html("The␣random␣data␣plot␣on␣the␣left␣with␣each␣

row␣representing␣a␣sample␣with␣size␣determined␣by\n"+
"the␣slider␣above␣and␣each␣circle␣representing␣the␣

average␣for␣that␣particular␣sample .\n"+
"First ,␣keep␣sample␣size␣relatively␣low␣and␣

increase␣the␣number␣of␣samples.␣␣Then ,␣\n"+
"watch␣what␣happens␣when␣you␣slowly␣increase␣the␣

sample␣size."))

# Plot the relative frequencies of the grouped sample
averages
print(html("Now ,␣the␣averages␣(ie.␣the␣circles)␣from␣

above␣are␣collected␣and␣counted\n"+
"with␣the␣relative␣frequency␣of␣each␣average␣

graphed␣below.␣␣For␣a␣relatively␣large␣number␣
of\n"+

"samples ,␣notice␣what␣seems␣to␣happen␣to␣these␣
averages␣as␣the␣sample␣size␣increases."))

if Smoothing:
binRange = Range //2

else:
binRange = Range

# normed=True # if you want to have relative
frequencies below

his_low = 2* rangemax /7
his_high = 5* rangemax /7

T =
histogram(avg_values ,normed=False ,bins=binRange ,range =(his_low ,his_high),axes_labels =['Sample␣
Averages ','Frequency '])

#T =
TimeSeries(avg_values).plot_histogram(axes_labels =['Sample
Averages ','Frequency '])

pretty_print('Scatter␣Plot␣of␣random␣data.␣␣Horizontal␣
is␣number␣of␣samples.')

(SCAT+AVGS+avg_line+avg_text).show()
pretty_print('Histogram␣of␣Sample␣Averages ')
T.show(figsize =(5,2))

So, even with random data, if you are to consider the arrangement of the
collected means rather than the arrangement of the actual data then the means
appear to have a bell-shaped distribution as well.

9.6 Central Limit Theorem

Often, when one wants to solve various scientific problems, several assumptions
will be made regarding the nature of the underlying setting and base their
conclusions on those assumptions. Indeed, if one is going to use a Binomial
Distribution or a Negative Binomial Distribution, an assumption on the value
of p is necessary. For Poisson and Exponential Distributions, one must know
the mean. For Normal Distributions, one must assume values for both the
mean and the standard deviation. Where do these values come from? Often,
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one may perform a preliminary study and obtain a sample statistic...such as a
sample mean or a relative frequency and use these values for or p.

But what is the underlying distribution of these sample statistics? The
Central Limit Theorem gives the answer...

The results from the previous section illustrate the tendency for bell-shaped
distributions. This tendency can be described more mathematically through
the following theorem. It is presented here without proof.
Theorem 9.6.1 Central Limit Theorem. Presume X is a random variable
from a distribution with known mean µ and known variance σ2

x. For some
natural number n, sample the distribution repeatedly creating a string of random
variables denoted X1, X2, ..., Xn and set X =

∑
Xk
n .

Then, X is approximately normally distributed with mean µ and variance σ2 =
σ2
x

n .

Often the Central Limit Theorem is stated more formally using a conversion
to standard units. Indeed, the theorem indicates that the random variable
X has variance σ2

n which means as n grows this variance approaches 0. So,
the limiting random variable has a zero variance and therefore is no longer
a random variable. To avoid this issue, the Central Limit Theorem is often
stated as:

For random variables

Wn =
X − µ
σ/
√
n

with corresponding distribution function Fn(Wn),

lim
n→∞

Fn(c) =

∫ c

−∞

1√
2π
e−z

2/2dz = Φ(c)

that is, the standard normal distribution function.
Checkpoint 9.6.2 WebWork - Computing probabilities on X. While
we are at it, can we "go backwards" and figure out the mean and variance if
given some probabilities.

A sample of n = 25 observations is drawn from a normal population with
µ = 1020 and σ = 230. Find each of the following:
A. P (X̄ > 1093)
Probability =
B. P (X̄ < 937)
Probability =
C. P (X̄ > 969)
Probability =

Example 9.6.3 Exponential X vs Normal X. Consider an exponential
variable X with mean time till first success of µ = 4. Then, σ = 2 using the
exponential formulas.
You can use the exponential probability function to compute probabilities deal-
ing with X. Indeed,

P (X < 3.9) = F (3.9) = 1− e−3.9/4 ≈ 0.6228.

If instead you plan to sample from this distribution n=32 times, the Central
Limit Theorem implies that you will get a random variable X which has an
approximate normal distribution with the same mean but with new variance
σ2
X

= 4
32 = 1

8 . Therefore

P (X < 3.9) ≈ normalcdf(0, 3.9, 4, sqrt(1/8)) = 0.2119.

�
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When converting probability problems from continuous (such as exponen-
tial or uniform) then no adjustment to the question is needed since you are
approximating one area with another area. However, when converting proba-
bility problems from discrete (such as binomial or geometric) then you need to
consider how the interval would need to be adjusted so that histogram areas for
the discrete problem would relate to areas under the normal curve. Generally,
you will need to expand the stated interval each way by 1/2.

The Central Limit Theorem provides that regardless of the distribution of
X, the distribution of an average of X’s is approximately normally distributed.
However, it also shows why X may also be approximated for some distributions
using the normal distribution as certain parameters are allowed to increase. Be-
low, you can see how Binomial and Poisson distributions can be approximated
directly using the Normal distribution.

Toward that end, for 0 < p < 1 consider a sequence of Bernoulli trials
Y1, Y2, ..., Yn with each over the space 0,1. Then,

X =

n∑
k=1

Yk

is a Binomial variable.
Theorem 9.6.4 Binomial as approximate Normal. Given a Binomial
variable X with µ = np and σ2 = np(1 − p), then X is approximately also
normal with the same mean and variance so long as np > 5 and n(1− p) > 5.

Proof. Using the Bernoulli variables Yk each with mean p and variance p(1-p),
note that the Central Limit Theorem applied to X =

∑
Yk
n gives that

X − p√
p(1− p)/n

is approximately standard normal. By multiplying top and bottom by n yields∑
Yk − np√
np(1− p)

is approximately standard normal. But
∑
Yk actually is the sum of the number

of successes in n trials and is therefore a Binomial variable. �

Example 9.6.5 Binomial as Normal. Binomial becomes normal as n→∞.
Consider n = 50 and p = 0.3. Then, µ = 15 and σ2 = 10.5.
Using the binomial formulas, for example,

P (X = 16) =

(
50

16

)
0.316 · 0.734 ≈ 0.11470

Using the normal distribution,

P (X = 16) = P (15.5 < X < 16.5)

≈ normalcdf(15.5, 16.5, 15, sqrt(10.5))

= 0.11697

Notice that these are very close. �

Corollary 9.6.6 Given a Poisson variable X with µ and σ2 = µ given, then
X is approximately also normal with the same mean and variance so long as
µ > 5.
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Proof. Note from before that the Poisson distribution function was derived
by approximating with Binomial and letting n approach infinity. Therefore,
by the previous theorem, the Poisson variable is also approximately Normal
using the Poisson mean and variance rather than the binomial’s. Indeed, in
standard units

Y − µ
√
µ

is approximately normal for large µ. �

Example 9.6.7 Poisson as Normal. Poisson becomes normal as µ → ∞.
Consider µ = 20. Then, σ2 = µ = 20.
Using the Poisson formulas, for example,

P (X = 19) =
2019e−20

19!
≈ 0.08883

Using the normal distribution,

P (X = 19) = P (18.5 < X < 19.5)

≈ normalcdf(18.5, 19.5, 20, sqrt(20))

= 0.08683

Again, these are very close. �

Theorem 9.6.8 Gamma as approximate Normal. Given a Gamma
variable X with mean rµ and variance rBLOB given, then X is approximately
also normal with the same mean and variance so long as CONDITION????.

Example 9.6.9 Gamma as Normal. Gamma becomes normal as r →∞.
Assume that the average time till a first success is 12 minutes and that r = 8.
Then, the mean for the Gamma distribution is µ = 12 · 8 = 96 and σ2 =
8 · 122 = 1152 and so σ ≈ 33.9411.
Using the Gamma formulas,

P (90 ≤ X ≤ 100) =

∫ 100

90

f(x)dx

= 0.59252− 0.47536 = 0.11716.

Using the normal distribution,

P (90 ≤ X ≤ 100) ≈ normalcdf(90, 100, 96, 33.9411) = 0.11707.

Amazingly, these are also very close. �

Example 9.6.10 Uniform X vs Normal X. Consider a discrete uniform
variable X over R = 1,2,...,20. Then, µ = 10.5 and σ = 202−12

20 using the
uniform formulas.
You can use the uniform probability function to compute probabilities dealing
with X. Indeed,

P (8 ≤ X < 12) = P (X ∈ {8, 9, 10, 11} =
4

20
= 1/5.

If instead you plan to sample from this distribution n=49 times, the Central
Limit Theorem implies that you will get a random variable X which has an
approximate normal distribution with the same mean but with new variance
σ2
X

= 199/20
49 = 199

580 . Therefore, expanding the interval to include the bound-
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aries of the corresponding histogram areas,

P (8 ≤ X < 12) = P (7.5 ≤ X ≤ 11.5) ≈ normalcdf(7.5, 11.5, 10.5, 0.585750) ≈ 0.9561.

�

As these examples illustrate, you will have increasing success in approx-
imating the desired probabilities so long as the distribution’s corresponding
parameter is allowed to be "sufficiently large". The mathematical reasoning
this is true is not provided but depends upon the "Central Limit Theorem"
discussed in the next section.

The above theorems allow you to utilize the normal distribution to compute
approximate probabilities for the variable X in the stated distributions. This
is not always true for all distributions since some do not have parameters
which allow for approaching normality. However, regardless of the distribution
the Central Limit Theorem always allows you to approximate probabilities if
they involve an average of repeated attempts...that is, for variable X. This
usefulness is illustrated in the examples below.

9.7 Summary

Here is a summary of the major points in this chapter:TBA

9.8 Exercises
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Checkpoint 9.8.1 - Computing basic standard normal probabilities.
Compute

•
P (Z > 0)

•
P (Z < 0.892)

•
P (Z < −0.892)

•
P (−1.45 < Z < 2.37)

•
P (−1 < Z < 1)

which is the probability of lying within 1 standard deviation of the mean.

•
P (−2 < Z < 2)

which is the probability of lying within 2 standard deviations of the mean.

•
P (−3 < Z < 3)

which is the probability of lying within 3 standard deviations of the mean.

• A value for a so that
P (Z < a) = 0.8

which would be the location of the 80th percentile.
Checkpoint 9.8.2 - Computing basic normal probabilities. Given
µ = 25 and σ = 4 compute

P (X < µ)

P (X > 26)

P (X > 22)

P (20 ≤ X ≤ 26)

Checkpoint 9.8.3 - IQ values. The Intelligence Quotient (IQ) is a measure
of your ability to think and reason. Presuming that IQ scores are normally
distributed with mean 100 and standard deviation 15, determine the location
of the 90th percentile. That is, the IQ score below which you will find approx-
imately 90



Chapter 10

Estimation

10.1 Introduction
You should have noticed by now that repeatedly sampling from a given distri-
bution will yield a variety of sample statistics such as x as an estimate perhaps
for the population mean µ or Y

n as an estimate for the population likelihood
of success p. In this section, you will see how these sample "point estimators"
are actually the best possible choices.

In creating these point estimates repeatedly, you have noticed that the re-
sults will change somewhat over time. Indeed, flip a coin 20 times and you
might expect 10 heads. However, in practice it is likely to 9 or 12 out of 20
and possible to get any of the other possible outcomes. This natural variation
makes the point estimates noted above to almost certainly be in error. However
one would expect that they should be close and the Central Limit Theorem
does indicate that the distribution of sample means should be approximately
normally distributed. Thus, instead of relying just on the value of the point es-
timate, you might want to investigate a way to determine a reasonable interval
centered on the sample statistic in which you have some confidence the actual
population statistic should belong. This leads to a discussion of interval esti-
mates known as confidence intervals (using calculational tools) and statistical
tolerance intervals (using order statistics).

In this chapter we first discuss how to determine appropriate methods for
estimating the needed population statistics (point estimates) and then quantify
how good they are (confidence intervals).

10.2 Interval Estimates - Chebyshev
An interval centered on the mean in which at least a certain proportion of the
actual data must lie.
Theorem 10.2.1 Chebyshev’s Theorem. µσa ∈ R+

P (
∣∣X − µ∣∣ < a) > 1− σ2

a2

Proof. Notice that the variance of a continuous variable X is given by

σ2 =

∫ ∞
−∞

(x− µ)2f(x)dx

≥
∫ µ−a

−∞
(x− µ)2f(x)dx+

∫ ∞
µ+a

(x− µ)2f(x)dx

163
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≥
∫ µ−a

−∞
a2f(x)dx+

∫ ∞
µ+a

a2f(x)dx

= a2
( ∫ µ−a

−∞
f(x)dx+

∫ ∞
µ+a

f(x)dx
)

= a2P (X ≤ µ− a or X ≥ µ+ a)

= a2P (
∣∣X − µ∣∣ ≥ a)

Dividing by a2 and taking the complement gives the result. �

Corollary 10.2.2 Alternate Form for Chebyshev’s Theorem. For
positive k,

P (
∣∣X − µ∣∣ < kσ) > 1− 1

k2

Corollary 10.2.3 Special Cases for Chebyshev’s Theorem.

Proof. Apply the Chebyshev Theorem with a = σ to get

P (µ− σ < X < µ+ σ) > 1− σ2

σ2
= 0

Apply the Chebyshev Theorem with a = 2σ to get 1− 1
22 = 0.75 and with

k = 3σ to get 1− 1
32 = 8

9 > 0.8888. �

Example 10.2.4 WebWork. A statistician uses Chebyshev’s Theorem to
estimate that at least 10 % of a population lies between the values 2 and 13.
Use this information to find the values of the population mean, µ , and the
population standard deviation σ.
a) µ =
b) σ = https://webwork-
ptx.aimath.org/webwork2/html2xml?courseID=anonymoususerID=anonymouspassword=anonymouscoursepassword =
anonymousanswersSubmitted = 0displayMode =
MathJaxoutputformat = simpleproblemSeed = 37sourceF ilePath =
Library/NAU/setStatistics/cheby2.pghttps : //webwork −
ptx.aimath.org/webwork2/html2xml?courseID = anonymoususerID =
anonymouspassword = anonymouscoursepassword =
anonymousanswersSubmitted = 0displayMode =
MathJaxoutputformat = simpleproblemSeed = 37sourceF ilePath =
Library/NAU/setStatistics/cheby2.pghttps : //webwork −
ptx.aimath.org/webwork2/html2xml?courseID = anonymoususerID =
anonymouspassword = anonymouscoursepassword =
anonymousanswersSubmitted = 0displayMode =
MathJaxoutputformat = simpleproblemSeed = 37sourceF ilePath =
Library/NAU/setStatistics/cheby2.pghttps : //webwork −
ptx.aimath.org/webwork2/html2xml?courseID = anonymoususerID =
anonymouspassword = anonymouscoursepassword =
anonymousanswersSubmitted = 0displayMode =
MathJaxoutputformat = simpleproblemSeed = 37sourceF ilePath =
Library/NAU/setStatistics/cheby2.pg �

Example 10.2.5 WebWork. Suppose that the blood pressure of the human
inhabitants of a certain Pacific island is distributed with mean, µ = 76 mmHg
and standard deviation , σ = 15 mmHg. According to Chebyshev’s Theorem,
at least what percentage of the islander’s have blood pressure in the range from
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32.5 mmHg to 119.5 mmHg ?
answer: %https://webwork-
ptx.aimath.org/webwork2/html2xml?courseID=anonymoususerID=anonymouspassword=anonymouscoursepassword =
anonymousanswersSubmitted = 0displayMode =
MathJaxoutputformat = simpleproblemSeed = 38sourceF ilePath =
Library/NAU/setStatistics/cheby1.pghttps : //webwork −
ptx.aimath.org/webwork2/html2xml?courseID = anonymoususerID =
anonymouspassword = anonymouscoursepassword =
anonymousanswersSubmitted = 0displayMode =
MathJaxoutputformat = simpleproblemSeed = 38sourceF ilePath =
Library/NAU/setStatistics/cheby1.pghttps : //webwork −
ptx.aimath.org/webwork2/html2xml?courseID = anonymoususerID =
anonymouspassword = anonymouscoursepassword =
anonymousanswersSubmitted = 0displayMode =
MathJaxoutputformat = simpleproblemSeed = 38sourceF ilePath =
Library/NAU/setStatistics/cheby1.pghttps : //webwork −
ptx.aimath.org/webwork2/html2xml?courseID = anonymoususerID =
anonymouspassword = anonymouscoursepassword =
anonymousanswersSubmitted = 0displayMode =
MathJaxoutputformat = simpleproblemSeed = 38sourceF ilePath =
Library/NAU/setStatistics/cheby1.pg �

Example 10.2.6 - Comparing known distribution to Chebyshev. TBA
�

10.3 Point Estimates
For Binomial, Geometric, what is p? For exponential, what is the mean? For
normal, what are the mean and standard deviation? Each of these parameters
are necessary before you can compute any probability values from their respec-
tive formulas. Since they might not be given in a particular instance, they will
need to be estimated in some manner.

This estimate will have to be determined likely by utilizing sampling in
some form. Since such an estimate will come from partial information (i.e. a
sample) then it is very likely going to only be an approximation to the exact
(but unknown) value. In general, an estimator is a numerical value which is
used in the place of an unknown population statistic. To determine precisely
what is a "best" estimator requires a multivariate approach and is beyond
the scope of this text. Indeed, to justify why each of the following are good
estimators look up the topic "Maximum Likelihood Estimators".

From your previous experience with the Poisson, Exponential, and Gamma
distributions, you should also remember that each required a known value for
µ before proceeding with calculations. It is sensible to consider estimating the
unknown population mean µ using the sample mean

µ ≈ x =

∑
xk
n

where the values xk are the n individual sample values.
For any continous variable and indeed for X), P (X = µ) = 0. In general,

you should expect a sample statistic to be close but not precisely equal to the
population statistic. Indeed, if you were so lucky as to have the sample statistic
to land on the population statistic, doing one more trial would mess things up
anyway and the sample statistic would certainly change some.

In a similar manner with the Binomial, Geometric, and Negative Binomial
distributions, you will remember that each required a known value for p before
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proceeding with any calculations. From our experiments we saw that relative
frequency appeared to stabilize around what you might expect for the true pro-
portion of success and therefore estimating the unknown proportion of success
p using relative frequency

p ≈ p̃ =
y

n
where y is the number of successes in a collection of n bernoulli trials. Again,
notice that the relative frequency p̃ is technically an average as well so the
probability that a given relative frequency will like exactly on the actual value
of p is again zero.

Finally, the Normal distribution requires a numerical value for σ, the pop-
ulation’s standard deviation. It can be shown that the maximum likelihood
estimator for σ2 is the variance v found in chapter one. However, you may
remember that at that time we always adjusted this value somewhat using the
formula s2 = n

n−1v which increased the variance slightly. To uncover why you
would not use the maximum likelihood estimator v requires you to look up the
idea of "bias". As it turns out, v is maximum likelihood but exhibits math-
ematical bias whereas s2 is slightly suboptimal with respect to likelihood but
exhibits no bias. Therefore, for estimating the unknown population variance
σ2 you can use sample variance

σ2 ≈ s2

and similarly sample standard deviation

σ ≈ s

to approximate the theoretical standard deviation.

10.4 Interval Estimates - Confidence Interval for
p

Sometimes selecting a value for p for a Binomial, Geometric, or Negative Bi-
nomial distribution problem can be done by using a theoretical value. Indeed,
when flipping a coin it is reasonable to assume p = 1/2 is the probability of
getting a head on one flip. Similarly, it is reasonable to assume p = 1/6 when
you are looking for a particular side of a 6-sided die. However, many times
you will want to deal with a problem in which it is not possible to determine
exactly the precise value for the likelihood of success such as your true proba-
bility of making a free throw in basketball or knowing the true percentage of
the electorate that will vote for your favorite candidate.

In these later situations, we found in the previous section that relative
frequency Y

n is generally a good way to estimate p. In this section, you will
investigate how to measure the closeness–and thereby assure some confidence
in that estimate–regarding how well the point estimate approximates the actual
value of p.
Definition 10.4.1 Confidence Intervals for p. Given a point estimate p̃
for p, a confidence interval for p is a range of values which contains the actual
value of p with high probability. In notation, a two-sided confidence interval
for p is of the form

p̃− E1 < p < p̃+ E2

with
P (p̃− E1 < p < p̃+ E2) = 1− α

where α is near 0 and Ek > 0. One-sided confidence intervals for p can be
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similarly described
P (p < p̃+ E2) = 1− α

or
P (p̃− E1 < p) = 1− α.

♦

Generally, symmmetry is presumed when using a two-sided confidence in-
terval so that E1 = E2 = E and therefore the interval looks like

P (p̃− E < p < p̃+ E) = 1− α.

In this case, E is known as the margin of error.
To determine E carefully, note that from the central limit theorem

Y − np√
np(1− p

=
p̃− p√

p(1− p)/n

is approximately standard normal for large n. Presuming that p̃ ≈ p and
replacing the unknown p terms on the bottom with p̃ gives

z =
p̃− p√

p̃(1− p̃)/n

where z is a standard normal distribution variable. So, using the central limit
theorem and the standard normal distribution, you can find the value zα/2
where

P (−zα/2 < z < zα/2) = 1− α

P (−zα/2 <
p̃− p√

p̃(1− p̃)/n
< zα/2) = 1− α

or by rearranging the inside inequality

P (p̃− zα/2
√
p̃(1− p̃)/n < p < p̃+ zα/2

√
p̃(1− p̃)/n) = 1− α.

Setting E = zα/2
√
p̃(1− p̃)/n gives a way to determine a confidence interval

centered on p̃ = Y
n for p with "confidence level" 1− α.

To complete the interval, one needs a specific value for zα/2. Generally, one
chooses confidence levels on the order of 90

zα/2 = InvNorm(1− α

2
)

For 90
P (−zα/2 < z < zα/2) = 0.9 = 1− 0.1.

Using the symmetry of the normal distribution, this can be rewritten

F (z 0.1
2

) = P (z < z 0.1
2

) = 0.95 = 1− 0.1

2
.

Using the inverse of the standard normal distribution (on the TI calculator
this is InvNorm(0.95)) gives z0.05 ≈ 1.645.

Similarly, for a 95

F (z 0.05
2

) = P (z < z 0.05
2

) = 0.975 = 1− 0.05

2
.

The calculators InvNorm(0.975) gives z0.025 ≈ 1.960.
For a 99

F (z 0.01
2

) = P (z < z 0.01
2

) = 0.995 = 1− 0.01

2
.
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The calculators InvNorm(0.995) gives z0.005 ≈ 2.576.
Notice that when computing the confidence intervals above that we choose

to just replace some of the p terms with p̃ so that only one p term was left and
could be isolated in the middle. There are other ways to deal with this. The
easiest is to take the worst case scenario for the p terms in the denominator
above. Indeed, the confidence interval is made wider (and therefore more
likely to contain the actual p) if the square root term is as large as possible,
using basic calculus it is easy to see that p(1-p) is maximized when p = 1/2.
Therefore, a second alternative is to create your confidence interval using

z =
p̃− p

1
2
√
n

and therefore E =
zα/2
2
√
n
. This method should be used only when trying to

create the roughest and "safest" interval.
The methods for determining a confidence interval for p above depend upon

a good approximation with the Central Limit Theorem. This approximation
will be fine if n is relatively large. To consider a confidence interval for p
when n is small, note that the binomial random variable is discrete and so
expanding the interval by a factor of 1

2n might be in order. Indeed, replace
zα/2 by tα/2(n− 1) and continue otherwise.

Another more elaborate mechanism when n is relatively large is given by the
Wilson Score. This confidence interval is more complicated than just taking p̃
and adding and subtracting E. This approach notes that the possible extreme
values for p must satisfy (before replacing some of the p terms with p̃)
Theorem 10.4.2 Wilson Score Confidence Interval for p.

p̃+
z2α/2
2n − zα/2

√
p̃(1−p̃)+

z2
α/2
4n

n

1 +
z2
α/2

n

< p <
p̃+

z2α/2
2n + zα/2

√
p̃(1−p̃)+

z2
α/2
4n

n

1 +
z2
α/2

n

Proof. Again, noting that p̃ = Y
n , the expression above

∣∣p− p̃∣∣ = zα/2

√
p(1− p)

n

can be simplified by squaring both sides to get

(
p− p̃

)2
= z2

α/2

p(1− p)
n

.

Replacing p̃ with the relative frequency gives

(
p− Y

n

)2
= z2

α/2

p(1− p)
n

or by simplifying

(n+ z2
α/2)p2 − (2Y + z2

/alpha/2)p+
Y 2

2
= 0.

Solving for p using the quadratic formula and simplifying ultimately results in
the described interval. �

Example 10.4.3 Comparison of the three Confidence Interval meth-
ods for p. Presume that from a sample of size n = 400 you get Y = 144
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successes. Determine 95
Normal Interval:

P (0.36−1.960
√

0.36 · 0.64)/400 < p < 0.36+1.960
√

0.36 · 0.64)/400) = 1−α.

or

P (0.36− 1.960 · 0.6 · 0.8)/20 < p < 0.36 + 1.960 · 0.6 · 0.8)/20) = 0.95

or
P (0.36− 0.04704 < p < 0.36 + 0.04704) = 0.95.

or
P (0.31296 < p < 0.40704) = 0.95.

So, there is a 95
Maximal Interval:

P (0.36− 1.960
1

2
√

400
< p < 0.36 + 1.960

1

2
√

400
) = 1− α.

or
P (0.36− 1.960

1

40
< p < 0.36 + 1.960

1

40
) = 1− α.

or
P (0.311 < p < 0.409) = 1− α.

Notice the interval is only slightly wider than when using p̃ to estimate p in
the first case.
Wilson Score Interval: Let’s do this on in parts...

zα/2

√
p̃(1− p̃) +

z2
α/2

4n

n
= 1.96

√
0.36 · 0.64 + 1.962

1600

400
≈ 0.04728

Therefore,

0.36 + 1.962

800 − 0.04728

1 + 1.962

400

< p <
0.36 + 1.962

800 + 0.04728

1 + 1.962

400

or
0.3145 < p < 0.4082

which is slightly different than the first and slightly smaller than the second.�
Checkpoint 10.4.4 WebWork. A poll is taken in which 332 out of 550
randomly selected voters indicated their preference for a certain candidate.
(a) Find a 99% confidence interval for p.

≤ p ≤
(b) Find the margin of error for this 99% confidence interval for p.(c) Without
doing any calculations, indicate whether the margin of error is larger or smaller
or the same for an 80% confidence interval.

� smaller

� larger

� same
Theorem 10.4.5 Determining Sample Size for proportions with a
preliminary estimate. Given a margin of error E and preliminary rela-
tive frequency estimate p̃0 the sample size needed to create the corresponding



170 CHAPTER 10. ESTIMATION

confidence interval is given by

n >
(zα/2
E

)2

p̃0(1− p̃0).

Proof. From the confidence interval

P (p̃− zα/2
√
p̃(1− p̃)/n < p < p̃+ zα/2

√
p̃(1− p̃)/n) = 1− α,

note that
E = zα/2

√
p̃(1− p̃)/n.

Presuming E is given and n is unknown, simply solve for n (noting that n is
an integer and therefore you will likely need to replace the equality with an
appropriate inequality). �

Theorem 10.4.6 Determining Sample Size for proportions with no
preliminary estimate. Given only a margin of error E, the sample size
needed to create the corresponding confidence interval is given by

n >
(zα/2

2E

)2

.

Proof. Note that the maximum for y = x(1− x) occurs at x = 1/2, y = 1/4.
Therefore, replacing p̃0(1− p̃0 ≤ 1

4 gives the result. �

Example 10.4.7 Determining Sample Size for one proportion. Given
a 99

n >

(
2.58

0.03

)2

0.35 · 0.65 ≈ 1682.59

or a sample size of at least 1683. �

Checkpoint 10.4.8 WebWork. Refer to the following scenario.
An epidemiologist is worried about the prevalence of the flu in East Vancouver
and the potential shortage of vaccines for the area. She will need to provide a
recommendation for how to allocate the vaccines appropriately across the city.
She takes a simple random sample of 332 people living in East Vancouver and
finds that 34 have recently had the flu.
Suppose that the epidemiologist wants to re-estimate the population proportion
and wishes for her 95% confidence interval to have a margin of error no larger
than 0.04. How large a sample should she take to achieve this? Please carry
answers to at least six decimal places in intermediate steps.
Sample size =

10.5 Interval Estimates - Confidence Interval for
µ

As with the confidence intervals above for proportions, the Central Limit The-
orem also allows you to create an interval centered on a sample mean for
estimating the population mean µ.
Definition 10.5.1 Confidence Interval for One Mean. Given a sample
mean x, a two-sided confidence interval for the mean with confidence level 1−α
is an interval

x− E1 < µ < x+ E2
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such that
P (x− E1 < µ < x+ E2) = 1− α.

Generally, the interval is symmetrical of the form x±E with E again known as
the margin of error. One-sided confidence intervals can be determined in the
same manner as in the previous section. ♦

Once again, utilize the Central Limit Theorem. Notice that the symmetrical
confidence interval

P (x− E < µ < x+ E) = 1− α.

is equivalent to

P

(
−E
σ/
√
n
<
x− µ
σ/
√
n
<

E

σ/
√
n

)
= 1− α

in which the middle term can be approximated using a standard normal vari-
able and therefore this statement is approximately

P

(
−E
σ/
√
n
< Z <

E

σ/
√
n

)
= 1− α.

Using the symmetry of the standard normal distribution about Z=0 gives

Φ(zα/2) = Φ

(
E

σ/
√
n

)
= P

(
Z <

E

σ/
√
n

)
= 1− α

2

and so to determine E again requires the inverse of the standard normal dis-
tribution function. Using an appropriate zα/2 (as determine in a manner de-
scribed in the previous section) gives a confidence interval for the mean

x− zα/2
σ√
n
< µ < x+ zα/2

σ√
n

with confidence level 1− α and margin of error

E = zα/2
σ√
n
.

Checkpoint 10.5.2 WebWork. A random sample of n measurements was
selected from a population with standard deviation σ = 18.6 and unknown
mean µ. Calculate a 90 % confidence interval for µ for each of the following
situations:
(a) n = 50, x = 100

≤ µ ≤
(b) n = 80, x = 100

≤ µ ≤
(c) n = 100, x = 100

≤ µ ≤
(d) In general, we can say that for the same confidence level, increasing the
sample size the margin of error (width) of
the confidence interval. (Enter: ”DECREASES”, ”DOES NOT CHANGE” or
”INCREASES”, without the quotes.)

It should be noted that the use of the Central Limit Theorem makes the use
of InvNorm an approximation. It can be shown that so long as n is larger than
30 then generally this approximation is reasonable. If not, then use replace the
z-score with a corresponding value from the t-distribution.
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Checkpoint 10.5.3 WebWork with t-scores. Use the given data to find
the 95% confidence interval estimate of the population mean µ. Assume that
the population has a normal distribution.
IQ scores of professional athletes:
Sample size n = 25
Mean x = 105
Standard deviation s = 10

< µ <

Additionally, this derivation assumes that µ is not known...indeed the goal
is to approximate that mean using x...but that σ is known. This is often not
the case. It can however be shown that if n is larger than 30, replacing σ with
the sample standard deviation s gives an acceptable confidence interval.
Theorem 10.5.4 Sample Size needed for µ given Margin of Error.
Given confidence level 1− α and margin of error E, the sample size needed to
determine an appropriate confidence interval satisfies

n >
(
zα/2

σ

E

)2

Proof. Solve for n in the formula for E above. Notice that n must be an
integer so you will need to round up. You will also need an estimate for the
sample standard deviation s by using a preliminary sample. �

Notice, in practice you might want to take n to be a little larger than the
absolute minimum value prescribed above since you are dealing with approxi-
mations (Central Limit Theorem and the use of an estimate for s rather than
the actual σ.)
Example 10.5.5 Determining Sample Size for one Mean. Given a 95

n >

(
1.96 · 2

0.1

)2

≈ 1536.64

or a sample size of at least 1537. �

10.6 Interval Estimates - Confidence Interval for
σ2

Once again, you may need to approximate the population variance or standard
deviation but only have the sample values available. One difference from the
previous sections is that you are not dealing with an average of values (such as x
or p̃) but with the average of the squares of values. The Central Limit Theorem
does not directly help you in this case but the following result (presented
without proof) provides a solution.
Theorem 10.6.1 Relationship between Variance and χ2. If S2 is a
random variable of possible sample variance values from a sample of size n,
then

W =
(n− 1)S2

σ2

is approximately χ2(n− 1).

To create a confidence interval for σ2 first consider an interval of the form

E1 < σ2 < E2
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and determine values for the boundaries so that the likelihood of this being
true is high. For this case, since the chi-square distribution only has a positive
domain and is not symmetrical, you will not expect to determine a symmetrical
confidence interval. Therefore, consider

P (E1 < σ2 < E2) = 1− α

and by playing around with algebra you get

P

(
E1

(n− 1)S2
<

σ2

(n− 1)S2
<

E2

(n− 1)S2

)
= 1− α

or by inverting the inequality yields

P

(
(n− 1)S2

E2
<

(n− 1)S2

σ2
<

(n− 1)S2

E1

)
= 1− α.

Using the previous theorem, note that the inside variable can be replaced with
a chi-square variable. If F is the distribution function for chi-square, then you
get

F

(
(n− 1)S2

E1

)
− F

(
(n− 1)S2

E2

)
= 1− α.

For a given value of α there are many possible choices but often one often
utilized is one in which

F (χ2
1−α/2) = F

(
(n− 1)S2

E1

)
= 1− α/2

and

F (χ2
α/2) = F

(
(n− 1)S2

E2

)
= α/2.

Using the inverse chi-square gives values for the expression on the inside and
algebra can be used to solve for each of E1, E2. Indeed,

E1 =
(n− 1)S2

χ2
1−α/2

and

E2 =
(n− 1)S2

χ2
α/2

To determine appropriate values for χ2
α/2 and χ2

1−α/2 with equal probabil-
ities in each tail, consider using the interactive cell below:

# Chi -Square Calculator for confidence intervals with equal
alpha/2 tails

var('t')
@interact(layout=dict(top=[['c'],['n']]))
def _(c=input_box (0.95, width=10, label='Confidence␣Level␣=␣

'),n=input_box (20,width=8,label='n␣=')):
alpha = 1-c
T = RealDistribution('chisquared ', n)
a = T.cum_distribution_function_inv(alpha /2)
a1 = T.cum_distribution_function(a)
b = T.cum_distribution_function_inv (1-alpha /2)
b1 = T.cum_distribution_function(b)

print 'From␣the␣Chi -Square␣distribution␣for␣X:'
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print 'P(',a,'<␣X␣<␣',(b),')␣=␣',c
print 'with'
print 'P(␣X␣<␣',a,')␣=␣',a1
print 'P(␣X␣<␣',b,')␣=␣',b1

f = x^(n/2-1)*e^(-x/2)/( gamma(n/2) *2^(n/2))
G =

plot(f,x,0,b+(b-a)/2)+plot(f,x,a,b,thickness=5,color='green ')
G += line ([(a,0) ,(a,f(x=a))],color='green ',thickness =3)
G += line ([(b,0) ,(b,f(x=b))],color='green ',thickness =3)
G +=

text(str(c.n(digits =5)) ,((a+b)/2,f(x=(a+b)/2)/3),color='green ')
G.show()

You can simply type in your input values easily in the Sage cell below.

# Chi -Square Calculator specifics
var('t')
c=0.95
n=8
alpha = 1-c
T = RealDistribution('chisquared ', n)
a = T.cum_distribution_function_inv(alpha /2)
a1 = T.cum_distribution_function(a)
b = T.cum_distribution_function_inv (1-alpha /2)
b1 = T.cum_distribution_function(b)

print 'From␣the␣Chi -Square␣distribution␣for␣X:'
print 'P(',a,'<␣X␣<␣',(b),')␣=␣',c
print 'with'
print 'P(␣X␣<␣',a,')␣=␣',a1
print 'P(␣X␣<␣',b,')␣=␣',b1

f = x^(n/2-1)*e^(-x/2)/(gamma(n/2) *2^(n/2))
G =

plot(f,x,0,b+(b-a)/2)+plot(f,x,a,b,thickness=5,color='green ')
G += line ([(a,0) ,(a,f(x=a))],color='green ',thickness =3)
G += line ([(b,0) ,(b,f(x=b))],color='green ',thickness =3)
G +=

text(str(c.n(digits =5)) ,((a+b)/2,f(x=(a+b)/2)/3),color='green ')
G.show()

Example 10.6.2 - Two-sided Confidence interval for σ2 and σ. Given
the data 570, 561, 546, 540, 609, 580, 550, 577, 585, determine a 95
Using the computational forumaula (or your calculator) gives s2 ≈ 479.5. Also,
notice for n=9, the resulting interval will use a Chi-square variable with 8
degrees of freedom. Using the symmetric option, gives χ2

0.025 = 2.18 and
χ2

0.975 = 17.53. Therefore

E1 =
8 · 479.5

17.53
≈ 221.095

and
E2 =

8 · 479.5

2.18
≈ 1759.63.

Hence, you are 95
221.095 < σ2 < 1759.63.

By taking square roots you get

14.87 < σ < 41.95.
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Notice, this interval is relatively wide which is a result both of the number
of data values being relatively small (n=9) and the actual data values being
relatively large and spread out. �

# Chi -Square Calculator specifics
var('t')
c=0.95
n=399
alpha = 1-c
T = RealDistribution('chisquared ', n)
a = T.cum_distribution_function_inv(alpha /2)
a1 = T.cum_distribution_function(a)
b = T.cum_distribution_function_inv (1-alpha /2)
b1 = T.cum_distribution_function(b)

print 'From␣the␣Chi -Square␣distribution␣for␣X:'
print 'P(',a,'<␣X␣<␣',(b),')␣=␣',c
print 'with'
print 'P(␣X␣<␣',a,')␣=␣',a1
print 'P(␣X␣<␣',b,')␣=␣',b1

Example 10.6.3 - Two-sided Confidence interval for the variance and
standard deviation with large n..
Checkpoint 10.6.4 WebWork. Find the critical values χ2

L = χ2
1−α/2 and

χ2
R = χ2

α/2 that correspond to 98% degree of confidence and the sample size
n = 9.
χ2
L = χ2

R =

Continuing the previous example, suppose now that you have n=400 data
values and suppose you have computed from those a sample variance of s2 =
479.5. Then, the only change in the calculation is the two chi-square statistic
values. For 95

E1 =
8 · 479.5

456.24
≈ 419.3

and
E2 =

8 · 479.5

345.55
≈ 553.7.

Hence, you are 95
419.24 < σ2 < 553.7.

By taking square roots you get

20.48 < σ < 23.53

which is a relatively tight confidence interval. Notice, these are also completely
contained in the confidence intervals from the previous small n example. �

Similar to above, another choice to estimate σ2 is to use a one sided con-
fidence interval. If you want to find one of these, continue as described above
but just leave one endpoint off. Indeed,

σ2 < E2

can be determined using

F (χ2
α) = F

(
(n− 1)S2

E2

)
= α
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and
E1 < σ2

can be determined using

F (χ2
1−α) = F

(
(n− 1)S2

E1

)
= 1− α.

Example 10.6.5 - One-sided Confidence intervals for σ2. �

You can, of course, use the formula to work out the sample size needed in
order to have a sufficiently narrow confidence interval
Checkpoint 10.6.6 WebWork. Find the minimum sample size needed to
be 99% confident that the sample variance is within 40% of the population
variance.

Finally, to determine a confidence interval for σ, proceed using the protocols
described above and simply take the square root on the resulting interval.
Example 10.6.7 - Confidence intervals for σ. �

10.7 Exercises
Checkpoint 10.7.1 - Basic Confidence interval for p. Given Y = 30
successes in n = 100 trials, determine a 90p̃ = 0.3 and z0.05 = 1.645 gives

0.3− 1.645

√
0.3 · 0.7

100
< p < 0.3 + 1.645

√
0.3 · 0.7

100

or
0.225 < p < 0.375.

Checkpoint 10.7.2 - Sample Size for confidence interval for p. Given
a preliminary estimate p̃0 = 0.23, determine the same size needed for determine
a 95Using z0.025 = 1.96,

n >
(1.96

0.02

)2 · 0.23 · 0.77 ≈ 1700.87

and so pick at least 1701 as the sample size.
Checkpoint 10.7.3 - Voting projection. Randomly polling 3200 eligible
voters for governor in a particular state resulted in finding that 1590 favored
your candidate. Determine an appropriate 95Note that although the point
estimate is below 50
Checkpoint 10.7.4 - Basic Confidence interval for the mean. Given
a sample mean of x = 25.3 with n = 121 and sample variance s2 = 12.1,
determine a 99Using z0.005 = 2.576 and s =

√
12.1 ≈ 3.4786 gives a confidence

interval
25.3− 2.576 · 3.4786

11
< µ < 25.3 + 2.576 · 3.4786

11
or

24.4854 < µ < 26.1148.

Checkpoint 10.7.5 - Confidence Interval Experiment.

Roll two regular pair of dice 35 times, recording the sum of the dots for each
roll. Using the data from your sample, determine the corresponding sample
mean and sample variance. Using this data, create a 95

Go back over your 35 rolls and count the number of 7’s or 11’s rolled.
Determine a corresponding relative frequency for this outcome. Using this
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data, create a 95
Repeat this exercise but this time roll 105 times. Notice how these differ

from the confidence intervals created with the smaller set. Write a paragraph
describing how these compare and whether one is better or not than the other.
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Chapter 11

Hypothesis Testing

11.1 Introduction

When creating confidence intervals, you started with a sample and used the
sample statistic (sample mean, relative frequency, sample variance, etc.) to
anchor an interval which (with high possibility) contains the corresponding
population statistic µ, p, σ2, etc. In this section, we instead start with an
educated guess for one of the population statistics µ, p, σ2 and then statistically
compare that value with the subsequently collected sample statistic.

The educated guess noted above is often called the "null hypothesis" and
should be considered as a guess that one tries to disprove if possible by using
a subsequent statistical sample.

11.2 Hypotheses and Errors

In formulating a hypothesis, you will be making a declarative statement (a
proposition) that has an actual truth value. That is, it is either true or it
is not true in real life. However, since we will assess that truth using a test
sample then measuring that truth value will never be 100

In general, there are four different outcomes that are possible when testing
a hypothesis:

• Your hypothesis is true and you determine that it is true.

• Your hypothesis is false but you determine that it is true.

• Your hypothesis is true but you determine that it is false.

• Your hypothesis is false and you determine that it is false.

The first and last cases are "good" since you have accurately determined the
truth of the hypothesis. The second and third are however bad since you either
believe something that is not true or you don’t believe something that is true.
We would like to minimize the likelihood of allowing these last two possibilities.

Toward that end, let’s consider the case where the hypothesis is true but
you determine (in error) that it is false. This is called a Type I error and we
will designate the probability of this error by α. To lower the risk of a Type
I error, you will want to make α smaller. In general, α is also called "the
significance level" with α = 0.05 a common choice with 0.01 and 0.10 also

179
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sometimes used. In general, any value between 0 and 1 is ok but large values
mean large likelihood for error so choosing a value closer to 0 is preferred.

In a similar manner, consider the case where the hypothesis is false but you
determine (in error) that it is true. This is called a Type II error and will be
denote the probability of a Type II error by β. Again, your goal is to make the
risk of a Type II error smaller and therefore want β to be as small as possible.

In the following sections you will play around with minimizing Type I and
Type II errors. Type I errors will be minimized by simply choosing a smaller
value for α when working through the formulas. Type II errors will be mini-
mized by talking (if possible) a larger sample size when computing the needed
sample statistics.

Toward that end, you will compose in each case a Null Hypothesis (denoted
N0). This statement is what you will test for truth. You will also compose an
Alternate Hypothesis (denoted Na) that is often the logical complement (but
not always) of N0. The null hypothesis is often a statement corresponding
to the likelihood that observations occur purely by chance while the alternate
hypothesis will often indicate that outcomes are not actually random but are
influenced by some (possibly unknown) causes. If our sample shows that the
null hypothesis N0 is false, then we will accept the alternate Na. If this is a
bad decision then it will be true that the hypothesis is true but you will have
determined that it is false...that is, made a Type I error.

To avoid ever making an Type II error, often often never "accepts" the null
hypothesis N0 even if the sample does not conclude that it is false. In other
words, if you do this then you will never allow yourself to determine that N0 is
true. Seems odd but this is one way to avoid ever worrying much about type
II errors. The best way to avoid this blind spot is to use relatively large test
samples and in doing so you will minimize the likelihood of type II.

So, our plan of attack is to find some way to determine, from a sample, the
amount of Type I error we might make. For a given problem, from the sample,
you will create a specific estimate for Type I error...called a p-statistic...and
compare to the chosen significance level α. Sounds easy enough?

Finally, you will notice in each of the instances presented that the form
of the solution method will be very similar to the forms we used in creating
confidence intervals. The difference is that for hypothesis testing we assume
the value in the middle and test to see whether the sample statistic is in one
of the tails so that we can reject rather than with confidence intervals we
assume as sample statistic is in the middle and then use that sample to create
boundaries within which the theoretical population statistic must like with
high confidence.

11.3 Hypothesis Test for one proportion
In this section, you will consider the following options for null hypothesis and
corresponding alternate hypothesis with respect to the unknown value p:

H0 : p = p0Ha : p 6= p0

or
H0 : p ≤ p0Ha : p > p0

or
H0 : p ≥ p0Ha : p < p0.

For any given problem, we choose only one of these three options. The first is
called a "two-tailed" test since the alternate hypothesis can not be equal if it is
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actually larger or smaller. The last two are called "one-tailed" tests since the
alternate hypothesis only allows for being on one side. Note that some people
will write all of these null hypothesis options using equality but the alternate
hypothesis determines the number of tails.

From the Central Limit Theorem, you found that every interesting distri-
bution eventually becomes approximately normal. This includes the binomial
distribution with mean µ = np0 and variance σ2 = np0(1 − p0). Hence, the
z-statistic

Z =
X − np0√
np0(1− p0)

=
p− p0√

p0(1− p0)/n

is approximately standard normal and so probabilities on this statistic can be
computed as needed using the normal distribution.

Let’s look at an example for this by considering:

H0 : p = 0.20

vs
Ha : p 6= 0.20.

Tests like this are called two-tailed since there are two ways to reject the null
hypothesis: we find that p should be less than 0.2 or we find that p should be
greater than 0.2.

To test our hypothesis, let’s now chose a significance level of α = 0.05 and
take a sample. Presuming we actually do this, let’s assume that we find that
out of n=100 sample values we get X = 27 successes. Hence, our actual test
statistic is p = 27

100 = 0.27.
So, in this case we have

σ =

√
p0(1− p0)

n
=

√
0.2 · 0.8

100
= 0.04

and the z-statistic (using the normal distribution) for the sample statistic of p
= 0.27 is

z =
0.27− 0.2

0.04
= 1.75.

Remember, the alternate hypothesis has two tails so to determine the P value
we need to determine from the normal distribution

P (Z > 1.75) + P (Z < −1.75)

and find that this has probability approximately 0.0392 + 0.0392 = 0.0784.
However, this P value is greater than our significance level α = 0.05 so we
cannot reject the null hypothesis at the 5 percent significance level. However,
if we had chosen initially to use a 10 percent significance level then we would
have rejected the null hypothesis and accepted the alternate.
Checkpoint 11.3.1 WebWork - two tailed test. Two-tailed test for p.

An article in the Washington Post on March 16, 1993 stated that nearly 45
percent of all Americans have brown eyes. A random sample of n = 84 C of I
students found 31 with brown eyes.
We test
H0 : p = .45
Ha : p 6= .45
(a) What is the z-statistic for this test?
(b) What is the P-value of the test?
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Checkpoint 11.3.2 WebWork. One-tailed test for p. Notice, in this case
you will only compute z-score probability for one tail and not both tails.

A noted psychic was tested for ESP. The psychic was presented with 180 cards
face down and was asked to determine if the card was one of 5 symbols: a star,
cross, circle, square, or three wavy lines. The psychic was correct in 43 cases.
Let p represent the probability that the psychic correctly identifies the symbol
on the card in a random trial. Assume the 180 trials can be treated as an SRS
from the population of all guesses.
To see if there is evidence that the psychic is doing better than just guessing,
we test
H0 : p = .2
Ha : p > .2
(a) What is the z-statistic for this test?
(b) What is the P-value of the test?

11.4 Hypothesis Test for one mean
In this section, you will consider the following options for null hypothesis and
corresponding alternate hypothesis with respect to the unknown value µ:

H0 : µ = µ0Ha : µ 6= µ0

or
H0 : µ ≤ µ0Ha : µ > µ0

or
H0 : µ ≥ µ0Ha : µ < µ0

Again, we choose only one of these three options and as before the first is called
a "two-tailed" test and the last two are called "one-tailed" tests. Note that
some people will write all of these null hypothesis options using equality but
the alternate hypothesis determines the number of tails.

Once again, if the test sample size is sufficiently large and the standard
deviation σ of the underlying distribution is known, one can use the normal
distribution to compute probabilities. If the test sample size is relatively small
or if σ is not known (and therefore is approximated by the sample standard
deviation s), then the t-distribution can be utilized to compute probabilities.
We will only consider using the t-distribution to compute p-values.

The Standard Error σe is given by

σe =
s√
n

where s is the standard deviation of the sample. For this presentation, we will
assume that the actual population is relatively large relative to the sample size.
In cases where this is not true, an adjustment (not presented here) will need
to be made when computing σe.

To determine the p-value for a given sample with sample mean x,

t =
x− µ
s√
n

is a t-variable with n-1 degrees of freedom. Therefore, probabilities on t can
be computed using the t-distribution.

Consider a Two-tailed Hypothesis test for µ using

H0 : µ = 200Ha : µ 6= 200
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using a sample of size n = 49 and with a resulting mean of x = 206, a sample
standard deviation of s = 15, and a significance level of α = 0.01.

The standard error for this test is

σe =
15√
49

=
15

7

and so using the t-distribution with degrees of freedom n-1 = 48 yields a t-
statistic of

t =
x− 200

σe
=

206− 200
15
7

=
14

5
= 2.80.

To compute the p-value,

P (t > 2.80) + P (t < 2.80) ≈ 0.0037 + 0.0037 = 0.0074.

Since this p-value is less than our significance level α = 0.01 then you can
reject the null hypothesis and accept the alternate.
Checkpoint 11.4.1 A random sample of 10 observations was drawn from a
large normally distributed population. The data is below.
22 20 22 20 25 18 22 23 19 18
To determine if you can infer at the 4% significance level that the population
mean is not equal to 22, complete the steps below:
The value of the standardized test statistic:
Using interval notation with∞ written as “infty” and ∪ written as “U” (capital
u), determine each of the following:
The rejection region for the standardized test statistic:
The p-value is
Your decision for the hypothesis test therefore would be to not reject the null
hypothesis H0.

This is a repeat of the previous exercise but using the OPL
Checkpoint 11.4.2 WebWorK - two tailed test. A random sample of
10 observations was drawn from a large normally distributed population. The
data is below.

17 21 22 16 21 20 23 17 23 22

Test to determine if we can infer at the 2% significance level that the population
mean is not equal to 18, filling in the requested information below.
A. The value of the standardized test statistic:
Note: For the next part, your answer should use interval notation. An answer
of the form (−∞, a) is expressed (-infty, a), an answer of the form (b,∞) is
expressed (b, infty), and an answer of the form (−∞, a) ∪ (b,∞) is expressed
(-infty, a)U(b, infty).
B. The rejection region for the standardized test statistic:
C. The p-value is
D. Your decision for the hypothesis test:

� Do Not Reject H0.

� Reject H0.

� Do Not Reject H1.

� Reject H1.

Consider One-tailed Hypothesis test for µ using an interesting application:
Suppose that a manufacturer bottling a delicious beverage and the label

indicates that the bottle contains 16 fluid ounces. Since providing the customer
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too little product might cause a significant negative reaction relative to the
modest additional cost of providing a little too much, consider the following
hypothesis test:

H0 : µ = 16Ha : µ > 200.

To test this hypothesis at significance level α = 0.05, you randomly pull out 20
bottles from the production line and accurately measure the amount of produce
in each bottle. If the resulting average of these measurements is x = 16.05
ounces with a standard deviation of s = 0.08 ounces, determine if you can
safely make it known that more product is actually delivered in general to
each consumer.

The standard error for this test is

σe =
0.08√

20
≈ 0.01789

and using the t-distribution with n-1 = 19 degrees of freedom yields a t-statistic
of

t =
x− 16

σe
=

16.05− 16

0.01789
≈ 2.795.

To compute the p-value,

P (t > 2.795) ≈ 0.0058.

Since this p-value is less than our significance level α = 0.05 (by a lot) then
you can reject the null hypothesis and accept the alternate. It is safe therefore
to say that customers can expect at least 16 ounces! However, note that some
folks will still be stiffed since the standard deviation of 0.08 certainly means
that some bottles have less than 16.05-0.08 ounces of beverage.
Checkpoint 11.4.3 WebWorK - one tailed test. Lois thinks that people
living in a rural environment have a healthier lifestyle than other people. She
believes the average lifespan in the USA is 77 years. A random sample of
15 obituaries from newspapers from rural towns in Idaho give x̄ = 78.11 and
s = 0.68. Does this sample provide evidence that people living in rural Idaho
communities live longer than 77 years?
(a) State the null and alternative hypotheses: (Type "mu" for the symbol µ ,
e.g. mu >1 for the mean is greater than 1, mu < 1 for the mean is less than
1, mu not = 1 for the mean is not equal to 1)
H0 :
Ha :
(b) Find the test statistic, t =
(c) Answer the question: Does this sample provide evidence that people living
in rural Idaho communities live longer than 77 years? (Use a 10
(Type: Yes or No)

11.5 Hypothesis Test for one variance

Proceeding in a similar manner, we can also perform hypothesis testing on
variances using the χ2-distribution to determine probabilities.

H0 : σ2 = σ2
0Ha : σ2 6= σ2

0

or
H0 : σ2 ≥ σ2

0Ha : σ2 < σ2
0
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or
H0 : σ2 ≤ σ2

0Ha : σ2 > σ2
0

test statistic = T = (n− 1)
s2

σ2
0

For two-tailed, reject if

T > χ2
1−α/2,n−1 or T < χ2

α/2,n−1

and for one-tailed to the right if

T > χ2
1−α,n−1

and for one-tailed to the left if

T < χ2
α,n−1.

Technically, for the two-tailed test you could pick T-values so that the total
probability sums to α in any fashion but generally this probability is split
evenly between the two tails as noted above.
Checkpoint 11.5.1 WebWorK. Use a α = 0.01 significance level to test the
claim that σ = 15 if the sample statistics include n = 23, x = 102, and s = 19.
The test statistic is
The smaller critical number is
The bigger critical number is
What is your conclusion?

� There is not sufficient evidence to warrant the rejection of the claim
that the population standard deviation is equal to 15

� There is sufficient evidence to warrant the rejection of the claim that
the population standard deviation is equal to 15

11.6 Summary
TBA

11.7 Exercises
TBA
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Chapter 12

Review of Calculus

This chapter is a review of power series results from Calculus.

12.1 Geometric Series

Knowledge of the use of power series is very important when dealing with both
probability functions.

S =

∞∑
k=0

xk =
1

1− x

as is its extension know as the negative binomial series (n ∈ N).

NB =

∞∑
k=0

(−1)k
(
−n+ k − 1

k

)
xkb−n−k =

1

(x+ b)n

In this section, we review this series, develop its properties, and explore some
of its extensions.

12.1.1 Geometric Series
Theorem 12.1.1 S =

∑∞
k=0 x

k = 1
1−x

Proof. Consider the partial sum

Sn =

n∑
k=0

xk = 1 + x+ x2 + ...+ xn

(1− x)Sn = Sn − xSn = 1 + x+ x2 + ...+ xn − (x+ x2 + ...+ xn + xn+1) = 1− xn+1

⇒ Sn =
1− xn+1

1− x

and so as n→∞,

Sn → S =
1

1− x
�

The interactive activity below shows how well the partial sums approximate
1

1−x as the number of terms increases.
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var('x,n,k')
f = 1/(1-x)
@interact
def _(n = slider (2,20,1,2)):

Sn = sum(x^k,k,0,n)
pretty_print(html('$S_n(x)␣=␣%s$'%str(latex(Sn))))
G = plot(f,x,-1,0.9,color='black ')
G += plot(Sn,x,-1,0.9,color='blue')
G += plot(abs(f-Sn),x,-1,0.9,color='red')
G.show(title="Partial␣Sums␣(blue)␣vs␣Infinite␣Series␣

(black)␣and␣Error␣(red)",figsize =(5,4))

12.1.2 Alternate Forms for the Geometric Series

Theorem 12.1.2 Generalized Geometric Series. k ∈ N,
∑∞
k=M xk = xM

1−x

Proof.

∞∑
k=M

xk = xM
∞∑
k=0

xk

= xM
1

1− x

=
xM

1− x
�

Example 12.1.3 Integrating and Differentiating to get new Power
Series. The geometric power series is a nice function which is relatively easily
differentiated and integrated. In doing so, one can obtain new power series
which might also be very useful in their own right. Here we develop a few
which are of special interest.
Let f(x) =

∑∞
k=0 x

k = 1
1−x . Then,

f ′(x) =

∞∑
k=1

kxk−1 =
1

(1− x)2

f ′′(x) =

∞∑
k=2

k(k − 1)xk−1 =
2

(1− x)3

f (n)(x) =

∞∑
k=n

k(k − 1)...(k − n+ 1)xk−n =
n!

(1− x)n+1∫
f(x)dx =

∞∑
k=0

xk+1

k + 1
= −ln(1− x)

�

Example 12.1.4 Playing with the base.

∞∑
k=0

akxk =

∞∑
k=0

(ax)k

=
1

1− ax
, |x| < 1

a
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or perhaps

∞∑
k=0

(x− b)k =
1

1− (x− b)
, |x− b| < 1

�

Example 12.1.5 Application: Converting repeating decimals to frac-
tional form. Consider this example:

2.48484848... = 2 + 0.48 + 0.0048 + 0.000048 + ...

= 2 + 0.48(1 + 0.01 + 0.0001 + ...) = 2 + 0.48

∞∑
k=0

(0.01)k

Therefore, applying the Geometric Series

2.48484848... = 2 + 0.48
1

1− 0.01

= 2 + 0.48
100

99
= 2 +

48

99

�

Example 12.1.6 Playing around with repeating decimals. Certainly
most students would agree that 0.333333... = 1

3 . So, what about 0.999999...?
Simply follow the pattern above

0.999999... = 0.9 + 0.09 + 0.009 + 0.0009 + ... = 0.9(1 + 0.1 + 0.12 + 0.13 + ...

= 0.9
1

1− 0.1
= 0.9

1

0.9
= 1

�

12.2 Binomial SumsBinomial SeriesTrinomial Se-
ries

The binomial series is also foundational. It is technically not a series since the
sumiffinitebutwewon

′tbotherwiththatfornow.Itisgivenby

Proof. By induction:
Basic Step: n = 1 is trivial
Inductive Step: Assume the statement is true as given for some n ≥ 1. Show
(a+ b)n+1 =

∑n+1
k=0

(
n+1
k

)
akbn+1−k

(a+ b)n+1 = (a+ b)(a+ b)n

= (a+ b)

n∑
k=0

(
n

k

)
akbn−k

=

n∑
k=0

(
n

k

)
ak+1bn−k +

n∑
k=0

(
n

k

)
akbn−k+1

=

n−1∑
k=0

(
n

k

)
ak+1bn−k + an+1 + bn+1 +

n∑
k=1

(
n

k

)
akbn−k+1
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=

n∑
j=1

(
n

j − 1

)
ajbn−(j−1) + an+1 + bn+1 +

n∑
k=1

(
n

k

)
akbn+1−k

= bn+1 +

n∑
k=1

[(
n

k − 1

)
+

(
n

k

)]
akbn+1−k + an+1

= bn+1 +

n∑
k=1

(
n+ 1

k

)
akbn+1−k + an+1

=

n+1∑
k=0

(
n+ 1

k

)
akbn+1−k �

ConsiderB(a, b) =
∑n
k=0

(
n
k

)
akbn−k. This finite sumisknownastheBinomialSeries.

Show that B(a, b) = (a+ b)n

Show that B(1, 1) = 2n

Show that B(−1, 1) = 0
Show that B(p, 1− p) = 1
Easily, B(x, 1) =

∑n
k=0

(
n
k

)
ak

(a+ b+ c)n =
∑

k1+k2+k3=n

(
n

k1, k2, k3

)
ak1bk2ck3

where
(

n
k1,k2,k3

)
= n!

k1!k2!k3! . This can be generalized to any number of terms to
give what is know as a multinomial series.

12.3 Negative Binomial Series
(a+ b)−n =

∑∞
k=0

(−n
k

)
akb−n−k-

Theorem 12.3.1 Alternate Form for Negative Binomial Series. (a+
b)−n =

∑∞
k=0 (−1)k

(
n+k−1

k

)
akb−n−k
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